

DREDGED MATERIAL RESEARCH PROGRAM

TECHNICAL REPORT D-77-38

HABITAT DEVELOPMENT FIELD INVESTIBATION,

TILLER SANDS MARSH AND UPLAND HABITAT

DEVELOPMENT SITE, COLUMBIA RIVER, OREGON

APPENDIX B: INVENTORY AND ASSESSMENT OF PREDISPOSAL AND POSTDISPOSAL AQUATIC HABITATS

bу

Robert J. McConnell, Sandv J. Lipovsky, David A. Misitano, Donnovan R. Craddock, and John E. Hughes

National Marine Fisheries Service Frescott, Oregon 97048

> June 1978 Final Report

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Prepared for Office, Chief of Engineers, U. S. Army Washington, D. C. 2031h

Under Interagency Agreement Nos. WESRF 75-88, WESRF 76-39, WESRF 76-3 (DMRP Work Unit Nos. 48050, J, and L)

Monitored by Environmental Laboratory

U. S. Army Engineer Waterways Experiment Station

P. O. Box 631, Vicksburg, Miss. 39180

HABITAT DEVELOPMENT FIELD INVESTIGATIONS, MILLER SANDS MARSH AND UPLAND HABITAT DEVELOPMENT SITE, COLUMBIA RIVER, OREGON

Appendix A: Inventory and Assessment of Predisposal Physical and Chemical Conditions

Appendix B: Inventory and Assessment of Predisposal and Postdisposal Aquatic Habitats

Appendix C: Inventory and Assessment of Prepropagation Terrestrial Resources on Dredged Material

Appendix D: Propagation of Vascular Plants on Dredged Material in Wetland and Upland Habitats

Appendix E: Postpropagation Assessment of Botanical and Soil Resources on Dredged Material

Appendix F: Postpropagation Assessment of Wildlife Resources on Dredged Material

Destroy this report when no longer needed. Do not return it to the originator.

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
Technical Report D-77-38				
4. TITLE (and Subtitio) HABITAT DEVELOPMENT	FIELD INVESTI-	5. TYPE OF REPORT & PERIOD COVERED		
GATIONS, MILLER SANDS MARSH AND UPLA DEVELOPMENT SITE, COLUMBIA RIVER, OR	Final report			
APPENDIX B: INVENTORY AND ASSESSMED POSAL AND POSTDISPOSAL AQUATIC HABI	6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(*) Robert J. McConnell Donnovan R. Craddock		8. CONTRACT OR GRANT NUMBER(*) Interagency Agreement Nos.		
Sandy J. Lipovsky John R. Hu	WESRF 15-88, 76-39, 76-178			
David A. Misitano				
9. PERFORMING ORGANIZATION NAME AND ADDRESS National Marine Fisheries Service		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
		DMRP Work Unit Nos. 4B05C,		
Prescott, Oregon 97048	4B05J, and 4B05L			
11. CONTROLLING OFFICE NAME AND ADDRESS Office, Chief of Engineers, U. S. Army Washington, D. C. 20314		12. REPORT DATE		
		June 1978		
		13. NUMBER OF PAGES		
		344		
14. MONITORING AGENCY NAME & ADDRESS(If differen	nt from Controlling Office)	15. SECURITY CLASS. (of this report)		
U. S. Army Engineer Waterways Experiment Stat Environmental Laboratory		Unclassified		
P. O. Box 631, Vicksburg, Miss. 3	9180	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE		
		<u> </u>		

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Aquatic habitats Field investigations Marsh development

Benthic fauna Fishes Marshes

Columbia River Food utilization Miller Sands Island

Dredged material Habitat development Sediment

Dredged material disposal Habitats Water quality Zooplankton

20. ABSTRACT (Continue to reverse side if necessary and identify by block number)

Miller Sands, an island-lagoon complex located in the Columbia River Estuary at River Kilometre 39 (River Mile 24) was one of five research projects where the feasibility of using dredged material for beneficial habitat development was studied. The study was conducted during predisposal, disposal, and postdisposal phases from March 1975 to July 1977. The National Marine Fisheries Service was part of a five-agency team charged with the investigation

(Continued)

20. ABSTRAC" (Continued).

of various physical, chemical, and biological parameters during the marsh development program. The National Marine Fisheries Service research findings describe changes in sediments, macroinvertebrates, various water quality parameters, zooplankton, nekton, and nekton food utilization.

Twenty species of finfish totaling 13,755 organisms were captured with beach seines and fyke nets during the day and night at 13 different sites during the study. Four species dominated the catch during fifteen bimonthly surveys and accounted for 93 percent of the total catch i.e. juvenile chinook salmon, peamouth chub, starry flounder, and threespine stickleback. A change occurred in fish abundance during the postoperational phase, but this change was attributed to behavioral reactions by anadromous and nonanadromous fish to a 100-year record low-flow condition experienced in the Columbia River during the winter, spring, and summer of 1977. Statistical analysis of age, weight, length, and abundance of nekton captured failed to reveal any significant changes as a result of disposal or as a benefit of habitat development at Miller Sands.

Sample: 54,000 prey organisms representing 36 taxa were consumed by nekton sample: during food utilization—dies at Miller Sands. Four main species of percent made up 95 percent of the total numbers of items consumed by all fis. at all sampling stations. These were Daphnia, Eurytemora, Corophium, and chironomid larvae and pupae. The sizes of fish did not significantly affect the food habits of most fish. While the large fish were able to consume greater quantities of food, the species composition was similar for all sizes. There were few differences between day and night samples, between cove and intertidal areas, and among stations within the cove area. With few exceptions, nekton species contained food during the entire study and were feeding in the Miller Sands area.

Results of sediment analysis indicated that sediment size and types were fairly uniform throughout the area. Fine sand and silty sand comprised the main sediment types at all stations. Organic matter was between 3 and 8 percent and there was no significant seasonal change. The average number of benthic organisms per square metre was highest the first year, and declined monotonically to the end of the study. A clam, an amphipod, a flatworm, and an important mysid (Neomysis) were not found in 1976-1977. Oligochaetes, Corophium, and chironomids constituted from 92-94 percent of the total organisms captured at Miller Sands. Over 209,000 benthic organisms representing 22 taxa were captured during the study.

Zooplankton were dominated by two Cladocerans, Daphnia and Bosmina, and one copepod, Cyclops. These three organisms represented 96 percent of the zooplankton collected and were present at all sampling stations during the first year of the study. However, sampling of zooplankton was excluded from the postoperational surveys.

Water flow conditions in the Columbia River were high in 1975, average in 1976, and were exceedingly low during the winter of 1976 and the spring-summer of 1977. Water quality parameters that were manifested as a result of these changes in flow probably overpowered subtle changes that could have developed as a result of the habitat improvement project at Miller Sands. Water quality parameters monitored were water temperature, pH, salinity, dissolved oxygen, turbidity, ammonia, total alkalinity, and nitrogen gas.

THE CONTENTS OF THIS REPORT ARE NOT TO BE

USED FOR ADVERTISING, PUBLICATION, OR

PROMOTIONAL PURPOSES. CITATION OF TRADE

NAMES DOES NOT CONSTITUTE AN OFFICIAL EN
DORSEMENT OR APPROVAL OF THE USE OF SUCH

COMMERCIAL PRODUCTS

PREFACE

The work described in this report was performed under Interagency
Agreement Numbers WESRF 75-88, WESRF 76-39, and WESRF 76-178,
between the U. S. Army Engineer Waterways Experiment Station (WES),
Vicksburg, Mississippi, and the National Marine Fisheries Service (NMTS),
Prescott, Oregon. The research was sponsored by the Office, Chief
of Engineers, U. S. Army, under the Dredged Material Research
Program (DMRP). The study, which was part of the Habitat Development
Research Program was conducted in the lower Columbia River at Miller
Sands during the period May 1975 through July 1977.

We would like to express our appreciation to Mr. George Snyder,
Assistant Director, Field Research Programs, NMFS, Seattle; and Mr. Theodore
Blahm, Station Chief, Prescott Field Station; and to the following members
of the Prescott and Hammond Station staffs: Larry Davis for the collection
and analysis of water chemistry, and collection of benthic organisms;
Maurice Laird and Edward Koller for collection of nekton; Suzie Valder
and John McNair for the sorting and identification of benthic organisms;
Nancy Knox and Mary Lee Brown for preparation of graphics, compilation of
data, and overall report preparation; Norm Kujala for analysis of the 19751976 benthic data; and Linda Jennings and Tracy Brown for help in recording
and tabulation.

The report was prepared for the Habitat Development Project (HDP), (Dr. Hanley K. Smith, Manager) as part of Task 4B: Terrestrial Habitat Development. Specific Sub-Tasks assigned to the NMFS included 4B05C, Baseline Biological Inventory and Assessment of the Aquatic Environs of

the Miller Sands Habitat Development Site; 4B05J, Aquatic Biology Investigations at Miller Sands Habitat Development Site, Columbia River, Oregon, and 4B05L, Post Operational Aquatic Biology at Miller Sands Habitat Development Site. The contracts were managed by Dr. Dave Parsons, Dr. John Bryne and Mr. Ellis J. Clairain, under the general supervision of Dr. John Harrison, Chief, Environmental Läboratory. Mr. John D. Lunz prepared the Scope of Work for the project in March 1976.

COL. G. H. Hilt, CE, and COL. J. L. Cannon, CE, were Directors of the WES during the conduct of this study, and Mr. F. R. Brown was Technical Director.

TABLE OF CONTENTS

PREFACE	
PART I: IN	TRODUCTION
	Background
PART II: ME	THODS AND MATERIALS
	Pre-Disposal Inventory
PART III: RE	SULTS AND DISCUSSION
	Zooplankton. 30 Water Quality. 32 Nekton. 38 Benthos. 50 Substrate. 59 Food Utilization. 65
PART IV: SU	MMARY AND CONCLUSIONS 78
	Benthos
LITERATURE CI	TED 83
TABLES B1 - E	223 87
APPENDIX B1:	ZOOPLANKTON PER CUBIC METRE COLLECTED AT MILLER SANDS & SNAG ISLAND MARCH 1975 - MAY 1976115
APPENDIX B2:	WATER QUALITY AT MILLER SANDS AND SNAG ISLAND MARCH 1975 - May 1976121
APPENDIX B3:	WATER QUALITY AT MILLER SANDS JULY 1976 - JULY 1977 127
APPENDIX B4:	NEKTON CAPTURED AT EACH STATION AND SAMPLING PERIOD MARCH 1975 - May 1976
APPENDIX B5:	NEKTON CAPTURED AND MEAN WEIGHT (IN GRAMS) PER INDI- VIDUAL AT EACH STATION AND SAMPLING TIME. MILLER SANDS 1976 - 1977

APPENDIX B6:	AGE CLASS NUMBER, MEAN WEIGHT AND LENGTH PER INDIVIDUAL FOR IMPORTANT NEKTON AT MILLER SANDS, RIVER KILOMETRE 39 March 1975 - May 1976	249
APPENDIX B7:	AGE CLASS, NUMBER, MEAN WEIGHT AND LENGTH PER INDIVI- DUAL FOR IMPORTANT NEKTON COLLECTED AT MILLER SANDS, RIVER KILOMETRE 39 July 1976 - July 1977	251
APPENDIX B8:	NEKTON IN ORDER OF MEAN ANNUAL ABUNDANCE. AVERAGE WEIGHT, IN GRAMS, PER INDIVIDUAL MEASURED AND EXPANDED, TOTAL WEIGHT OF FISH CAPTURED AT MILLER SANDS JULY 1976 - July 1977	253
APPENDIX B9:	MACROINVERTEBRATE, NUMBER OF INDIVIDUALS CAPTURED IN ALL REPLICATIONS AT MILLER SANDS, OREGON MARCH 1975 - MAY 1976	255
APPENDIX BlO	MACROINVERTEBRATE, TAXA IN ORDER OF MEAN ANNUAL ABUNDANCE FROM ALL STATIONS AT MILLER SANDS, OREGON July 1976 - July 1977	294
APPENDIX B11	PHYLOGENETIC LIST OF BENTHIC INVERTEBRATE SPECIES AT MILLER SANDS, OREGON 1975 - 1977	305
APPENDIX B12	NUMBERS AND VOLUMES OF ITEMS CONSUMED BY FISH AT ALL AREAS JULY 1976 - JULY 1977	309
APPENDIX B13	PERCENT NUMBER AND VOLUME OF ITEMS CONSUMED P' ALL FISH THROUGH JULY 1977	343

MILLER SANDS MARSH AND UPLAND HABITAT DEVELOPMENT SITE, COLUMBIA RIVER, OREGON

APPENDIX B: INVENTORY AND ASSESSMENT OF PREDISPOSAL AND POSTDISPOSAL

AQUATIC HABITATS

PART I: INTRODUCTION

Background

- 1. Miller Sands, an island-lagoon complex located in the lower Columbia River, is one of five research projects where the feasibility of using dredged material for beneficial habitat development is being studied. The objective of these studies is to provide information on the environmental impact of dredging and dredged material disposal and to develop economically feasible dredging and disposal alternatives which are environmentally compatible.
- 2. The U.S. Army Corps of Engineers (CE) Environmental

 Laboratory (EL) of the Waterways Experiment Station (WES) at Vicksburg,

 Mississippi has the overall responsibility for the Habitat Development

 Research Project (HDRP) at Miller Sands.
- 3. Principal investigators at the Miller Sands project were
 Portland District Corps of Engineers, Oregon State University, Washington University, Wave Beach Grass Nursery, and the National Marine
 Fisheries Service.
 - 4. In 1975 the Environmental Conservation Division, National Marine

Fisheries Service (NMFS) contracted with the WES to provide a baseline biological inventory of the aquatic biota at Miller Sands. The baseline inventory encompasses two phases of the study, (1) preoperational phase: March, May and early July of 1975. (2) Operational phase: August 1975 through May 1976 during which time the recently deposited material was graded to provide for marsh development within the intertidal zone at the upper end of the lagoon. During the spring of 1976 National Marine Fisheries again contracted with WES to perform the research for the postoperational phase of the Miller Sands Habitat and Marsh Development Project, (July 1976-July 1977).

Site Description

- 5. Miller Sands is a horseshoe shaped island located approximately 39 kilometers (24 miles) from the mouth of the Columbia River (Figure B1). This large, dredged material, island marsh complex of approximately 96 hectare (240 acres) is part of the Lewis and Clark National Wildlife Refuge.
- 6. The main vegetated island was formed during the 1930's from sediments dredged from the navigation channel of the Columbia River.

 A 101 hectare (250 acre) cove was created during the 1950's by placing dredged material partially parallel and almost connecting with the main island at the upriver end. This sand spit has remained unstable and unvegetated. The results of these events formed the horseshoe shaped island-lagoon-sand spit complex that we find today (Figure B2).
 - 7. The variable freshwater discharge of the Columbia River basin

Figure Bl. Location of the Miller Sands Marsh Development Site in Relation to the Columbia River Estuary.

combined with large tidal variations strongly influences the aquatic ecology of Miller Sands.

- 8. Freshwater discharge into the estuary is characterized by peak flows generally occurring during late spring (May-June), then decreasing to a low flow from August to October. Variable winter floods (December-January) may cause periods of high river flows which exceed the spring maximum.
- 9. Mean annual discharge for the fifteen year period 1961-1975 was 7,603 cubic meters per second (cms). During the 29 month study period at Miller Sands flows ranged from a monthly average high of 18,856 cms in May 1976 to a low of 2,432 cms in January 1977; these flows were 137% and 34% of their respective 15 year monthly averages.
- 10. Tidal variations at Miller Sands are of the mixed semidiurnal type characteristic of the Pacific Coast. Normally, the two high and two low tides are of unequal duration and height (average tidal cycle is 12 hours, 25 minutes). The mean tidal range from lower low water to higher high water is 2.59 meters (8.5 ft.) with extreme ranges approaching 3.6 meters (12 ft.).
- 11. Salinity intrusion, the distance saline water intrudes upstream, is constantly changing depending on tidal stage, fresh water runoff, and weather conditions. Maximum salinity intrusion occurs during high tide low runoff periods in the late fall. In October 1977, salinity of 8 ppt was measured at the bottom of the ship channel at river kilometer 42 (river mile 26). Minimum intrusion occurs with low tides and high river flow and may be less than 8 kilometers (5 miles), (Neal, 1965).

- 12. The Columbia River estuary, because of its volume of freshwater discharge and large tidal variation, is extremely well-flushed.

 Neal (1965) calculated flushing time to be between 5 and 10 days. The cove at Miller Sands is also well flushed due to the channel at the upstream end of the island and the open end of the horseshoe downstream (Figure 2).
- 13. Water quality in the lower Columbia River and at Miller Sands is good compared with other large river systems in the United States. Dissolved chemicals generally have values less than the concentration standards set by Oregon's Department of Environmental Quality. Water quality problems do exist and are mainly associated with water temperatures during the late summer and fall, turbidity and dissolved atmospheric gases (nitrogen) during periods of high freshwater flow.
- 14. One of the major problems in the Columbia River Estuary is the continuing loss of productive aquatic habitat through dredge disposal and industrial or commercial land fills.
- 15. Two broad classes of sediments, organic and inorganic, form the substrate of an aquatic ecosystem. Inorganic sediments, sand, silt, and clay, are the major components of the sediments in the Columbia River, and are introduced into the estuary from the ocean, from river runoff or from local tributaries. Organic material which consists of dead plant and animal matter, chemical and industrial waste form a small fraction of estuarine sediments.
- 16. Substrate material collected and analyzed by the U. S. Geological Survey (Hubbell and Glenn, 1972) show an "average" sediment sample

from the estuary contains 15% gravel, 84% sand, 13% silt and 2% clay. This is a generalization and sediment texture varies widely throughout the estuary.

- 17. Water velocity and particle size are the important factors which determine if and how a sediment particle will be transported or deposited. Sand generally moves along the bottom with the flow of current while the fine material (silt and clay) remains suspended until water flow is reduced over shallow flats or stopped by tidal action.
- 18. The texture of a substrate is a controlling factor which determines the biological community which may be found at a given location.

 Sediments found in the channels and deep water areas are generally coarse (gravel and sand) and of little biological significance. Fine sediments (silt and clay) tend to settle out over low energy flat areas of the estuary and generally support an abundance and diversity of plant and animal life.
- 19. The tidally influenced, primarily freshwater, 101 hectare (250 acre) lagoon at Miller Sands is a protected, potentially productive aquatic animal habitat. Miller Sands and the shallow lagoon were formed from sand, dredged from the nearby navigation channel of the Columbia River. Theoretically, with reduced flows and the establishment of marshland vegetation in the lagoon, fine sediments (silt, clay) should settle out, changing the character of the substrate and increasing fertility.
- 20. Located at the upstream end of the Columbia River estuary,
 Miller Sands is rarely subjected to salinity intrusion, therefore the

planktonic and benthic invertebrates found in this area are limnetic (Haertel and Osterberg, 1966) (Misitano, 1974). These invertebrate organisms provide an important food source for the freshwater and brackish water fish species of the Columbia River estuary.

- 21. Chinook salmon (Oncorhynchus tshawytscha) are the most economically important fish originating in the Columbia River. This anadromous species provides a multi-million dollar income annually to fishermen in the Pacific Northwest. Juvenile chinook generally migrate during the spring of their first (fall chinook) or second (spring chinook) year of life. Numbers of fall chinook remain and feed in the lower Columbia River until the spring following their initial migration (Durkin and McConnell, 1973) (McConnell and Blahm, 1974).
- 22. Migration routes for all adult and juvenile anadromous fish are in close proximity to Miller Sands. These species include Chinook, Coho, Sockeye and Chum salmon, Steelhead trout, Eulachon, American Shad, and the largest of the freshwater fishes found in the Columbia River, the White Sturgeon.

Study Site Development

23. Miller Sands was originally constructed in 1932 from material dredged from the navigation channel of the Columbia River. In the early 1970's dredge material was deposited parallel to and almost connecting with the main island at the upstream end. This created a protected intertidal lagoon between the main island and the sand spit (Figure B3). Development of the marsh habitat at the upper end of the cove consisted

A. May 1975

B. April 1976

Figure B3. Photographs of Miller Sands During Various Phase of the Habitat Improvement Project.

of grading material from the sandspit into a smooth sloping surface which covers approximately 4 hectares. This site was divided into 270 plots (10 by 14m) and during the spring and summer of 1976 these plots were planted in a factionial design to test various species of marsh plants and fertilizer treatments; at three elevations within the intertidal zones.

- 24. Studies of the aquatic biota associated with Miller Sands were initiated in March, 1975. Three surveys, March, May and July, were conducted prior to the disposal operation in mid-July (Blahm 1975). These combined with six additional bimonthly surveys (August, 1975 to May, 1976) established a baseline inventory of existing aquatic biota near or in the cove at the Miller Sands complex. Baseline date collected during this pre-operational phase included nekton, zooplankton, and benthos. Water quality parameters were also monitored during the nine sampling periods.
- 25. In July, 1976 studies designed to assess the impact of dredge disposal and subsequent marsh development on the aquatic ecosystem at the Miller Sands site were initiated. The emphases of the six post-operational surveys (July 1976 to July 1977) was to document changes occurring in the macrobenthic and nektonic faunal communities associated with the cove. Biological data collected during this phase of the study included nekton at twelve stations and macrobenthic organisms at twenty-six locations throughout the cove at the Miller Sands site. Substrate material and water-quality parameters were monitored to determine if changes in the physical and chemical characteristics of the cove were occurring.

PART II: METHODS AND MATERIALS

Pre-Disposal Inventory

- 26. Samples were collected at seven stations in or near the Miller Sands complex during nine sampling periods March, May, July, August, September, and November 1975; and January, March and May 1976.
- 27. Station designations originally used by Blahm (1975) have been changed to correspond to site designations (Figure B4) used by the site manager from WES in the draft scope of work (March 10, 1976). Sample sites 2, 3, 5, 10 and 11 were located within the Miller Sands cove. Station 12 was located outside the lagoon, at the upstream end of the complex between the sand spit and navigation channel. The station at Snag Island (S.I.) was selected as a control site remote from Miller Sands. This site was discontinued in July 1976.

Post-Operational Studies

- 28. Eleven sampling stations, laid out in a grid pattern, were established in the cove at Miller Sands prior to the start of post-operational surveys. Cove stations along with Station 12 (previously described) are designated by numbers 1 through 12 (Figure B5).
- 29. Fifteen sampling stations were established along five transects in or near the intertidal, marsh experimental site. Sampling stations were located on each transect at the .3, 1.2, and 1.8 metre (1, 4 and 6 foot) contour elevations. Stations in the intertidal area are designated by transect (A through E) and site (1, 2 and 3). For example, C2 is the third transect from the main island and is on the 12 metre (4 foot) elevation.

Figure 4. Field Location and Placement of Macrobenthos,
Nekton and Water Quality Stations in the Intertidal Area of the Miller Sands Site, Columbia
River, Oregon. Each Station is Located in
Relation to a Specific Intertidal Elevation.

Figure 5. Field Location and Placement of Macrobenthos, Nekton and Water Quality Stations Within the Cove at the Miller Sands Habitat and Marsh Development Site.

- 30. Stations were marked by bouys or fence posts to aid in relocating sites throughout the study period. Contour elevations and station locations were verified by the Portland District, Corps of Engineers.
- 31. Throughout the post-operations study (July 1976-July 1977) the Pacific Northwest was experiencing a 100 year record draught. Due to this situation extreme low-flow conditions prevailed at Miller Sands making it necessary to adjust certain sampling schedules. These adjustments are shown in Table B1.

Sampling Program

- 32. Zooplankton populations were sampled with a 12.7 cm (5 in.) diameter Clark Bumpus sampler with a number 6 (0.24 mm) net and a digital recording flow meter. Five minute horizontal surface tows were made at four locations during each of the nine baseline surveys. Tows were made during daylight hours at mean and high tides in March, May, July and August 1975. Samples were taken only at high tide thereafter because shallow water in the cove prevented proper gear function. Tows were made between stations 5 and 6 and between stations 10 and 11 in the cove; the other two sites were located outside the cove at stations 12 and Snag Island. Samples were preserved in 10 percent buffered formalin solution and returned to the laboratory for identification and enumeration.
- 33. Samples were treated with a vital stain (Rose Bengal) and allowed to set for at least 24 hours. After an initial examination, samples containing large numbers of organisms or detritus were subsample i with a four-chambered plankton splitter. Organisms from at least two chambers were counted and a comparison was made to assure uniformity between splits. Excess liquid was removed from samples by filtering through a No. 20 screen, remaining material was placed in culture dishes for examination.
- 34. Zooplankton were identi led to genus (Pennak 1953, Ward and Whipple 1959) and counted with the use of a sterozoom dissecting microscope. Developmental stages of the order copepoda were grouped and recorded as copepodites. Rotifiers, present during all sampling periods,

were not included due to the loss of these small organisms through the .24 mm sampling net. Two genera, <u>Brachionus</u> sp. and <u>Asplancha</u> sp. of this class were common.

- 35. The volume of water strained, during each 5 minute tow was determined from the area at the mouth of the sampler, number of revolutions registered by the flow meter and a clibration factor for the meter. All organisms in a sample or subsample were counted and the number per cubic metre (N/m^3) calculated.
- 36. Water quality parameters were monitored at all stations during the nine surveys of the Baseline Inventory (Table Bl). These samples were collected at mid-depth during daylight hours (0700-1900).
- 37. Water depth was determined with a Ross Sportsman sounder or a lead line. Temperature, conductivity, and salinity were measured with a Beckman Model RS5-3 salinometer. In-situ turbidities were measured by the nephelemetric method and recorded in Formazin Turbidity Units (FTU). An H.F. Instrument Model DRT100 meter was used during the first three surveys; thereafter, a flow-through Hach "Surface Scatter" Turbidimeter was used. A Leeds and Northrup Model 7404 meter was used to record pH. The modified Winkler System (EPA 1974) was used for onsite calibration of a USI (Model 57) dissolved oxygen meter which in turn was used for in-situ measurements.
- 38. Water samples used for the determination of dissolved nitrogen saturations were collected in BOC bottles, chilled and returned to the Prescott Facility for analysis with a Van Slyke Blood Gas Apparatus (Van Slyke-Neil 1924).

- 39. Two additional water quality parameters were monitored during the Post-operation Phase of the Miller Sands study. Total Alkalinity was determined by the indicator method as described in Standard Methods (EPA 1974). Ammonia (NH₃N/1) concentrations were monitored with an Orion Model 407 specific ion meter and ammonia electrode Model 95-10.
- 40. Methods of collection and analysis remained consistent during all fifteen surveys. With the exception of dissolved nitrogen, water quality parameters were monitored and analyzed on site. Table B2 lists the parameter, standard units and symbols used in reporting water quality at Miller Sands.
- 41. During the six post operational surveys at Miller Sands samples were to be collected four times at thirteen stations. Each station was to be monitored on flood and ebb tides, between 0700-1900 (day) and at night between 1900 and 0700 hours. After the first two surveys (July and September 1976) it was determined, this schedule could not be adhered to because of time constraints and bathmetric limitations within the cove resulting from the prevailing low-flow conditions in the river.
- 42. After a review of available data it was decided that, due to the close proximity of stations and homogeneity of water quality at all stations in the cove, a reduction in number of stations would have the least affect on final information. Thus, nine stations were established two (C and E) associated with the experimental marsh area, and five (2,3,6,10,11) in the cove. Station 1 located in the channel between the island and sandspit provided a reference to inflowing water while Station 12 provided a reference with ambient river conditions (Figure B4). Water

sampling was synoptic with nekton collection period.

- A beach seine was fished at five sampling sites during each of the baseline surveys. Sites 2 and 3 on the main island and 10 and 11 on the sandspit were within the cove (Figure B5). Station 12 was located on the channel side of the island to provide a reference to the fish present in the area and also timing of anodromous fish migrations. beach seine was constructed of 12.7mm stretched mesh, nylon web and measured 76.2m long by 3.7m deep. Sampling procedure was to anchor the bunt end of the net on the beach then pay the net over the bow of a 5m outboardpowered boat while backing away from the beach at a 45-60 degree angle. When fully extended the net would be returned to the beach in a 135-120 degree sweep. Area sampled was approximately 0.9 hectares depending on current, tides and bottom configuration. Captured fish were eased to one end of the seine, transferred to tubs, identified, counted by species and returned to the river. A subsample of 10 fish per species were measured (fork length in mm) and weighed (gm). A scale sample was removed for aging.
- 44. During the post-operational phase of the study a destructive and non-destructive sampling procedure was employed to determine the species, numbers, length, weight, age of dominant species, and food habits of nekton present in the Miller Sands cove. Fyke (hoop nets with wings) nets and the previously described beach seine were used to collect nekton at 12 sampling sites throughout the cove.
- 45. Fyke nets used were winged D-shaped hoop nets with 12.7mm stretch mesh to the first fyke, remainder of the net was constructed of

- .64mm stretch mesh. Wings, on both sides, were 3m long by .9m deep and and were 12.7mm stretch mesh. Five fyke net stations (A,B,C,D,E) were located on the .3 metre contour elevation at the five transects established in or near the experimental intertidal marsh habitat site. A fyke net was also fished at Station 6 near the center of the cove. Nets were fished twice (day and night) during each survey. Fyke nets were set at low water with the axis parallel to the high-low elevation gradient and the hoop opening directed toward the upper elevation. Wings were set to direct fish into the trap during the receding tide. Traps were harvested and reset at the next low water.
- 46. Six beach seine stations were located within the cove; stations 2,3,10, and 11 were fished during the baseline inventory. Two additional stations were added near the marsh experimental area. Station 5 was located at the head end of the cove between transect A and B while Station 9 was located on the sandspit downstream from the marsh area. Station 12 the river reference site was discontinued. Beach seine stations were sampled during two time period 0700-1900 hours and 1900-0700 hours between mid-flood and mid-ebb tides.
- 47. All organisms captured were identified to species, counted, and rough sorted into the following length categories. Fish whose total length was between 0-100mm were separated into 25mm groups; those between 101-300mm in 50mm groups; all fish over 300mm were placed into 100mm groups. Ten fish of each species and size group were sacrificed at each station during all surveys. Speciments were preserved in 10 percent buffered formalin and returned to the National Marine Fisheries Service, Hammond

Facility, where they were measured (total length in mm) and weighed (gms). Scale samples were taken for age determination and stomachs removed for a food utilization study.

- 48. Seven benthos stations were sampled (Table B1) during the nine baseline surveys (March 1975-May 1976). A 0.1m² sample was collected by combining two grabs from a 0.05m² Eckman dredge. Six paired replicate samples were collected at each station during each of the nine surveys. Paired samples were washed through a number 30 seive (.586mm) which is recommended by Schlieper (1972) for sampling macrobenthic organisms. Material retained on the screen was preserved in 10 percent buffered formalin containing Rose Bengal, a vital stain. Samples were returned to the laboratory for identification, enumeration, and weighing of the dominant organisms.
- 49. After an evaluation of benthic data collected during the baseline inventory it was decided that a reduction in sample quantity, (from 0.1m^2 to 0.05m^2) and in number of replicates (from six to three), would not statistically reduce the quality of the data. Sampling stations at Snag Island and at river Station 12 were discontinued prior to the post-operational phase of the study.
- 50. Twenty-six benthos stations were sampled during the post-operational phase (July 1976-July 1977) at Miller Sands. The eleven stations located within the cove were established on a grid pattern which provided complete coverage of the cove's substrate. Five of these stations (2, 3, 6, 10 and 11) were established during the baseline inventory. Fifteen additional stations were located along the five transects established

in or near the marsh experimental site. The three sites on each transect correspond to the .3, 1.2 and 1.8 metre contour elevations.

- 51. Samples within the cove were collected with the 0.05m² Eckman dredge during high water. Samples from the fifteen sites located in the intertidal marsh development area were collected by hand during low ebb tide. Hand dug samples were taken from an area defined by a 0.05m² frame to a depth of 10cm. Replicate (three) samples were placed in individual containers and transported to the boat for washing.
- 52. Samples were preserved and returned to the laboratory where all organisms were removed from the debris, identified, counted, and weighed. Mollusks were weighed separately and estimates of total biomass per sample follow procedures as described by Weber (1973).
- 53. Sediment samples were collected synoptically with benthos sampling. A coring device which measured 3.8cm inside diameter was used to collect sediment samples to a depth equaling the penetration of the benthic sampling device. Sediment samples taken from the Eckman dredge were measured for depth thus providing a gauge on which to establish uniform penetration of the dredge into the substrate during each replicate grab.
- 54. Samples from the intertidal marsh area were taken from the sampling frame prior to removal of the benthic samples. Each sediment sample was pred in a plastic sack, marked by station and grab (replicate) number and sent to a testing laboratory for analysis. Particle size was determined by standard seive and pipette procedures. The course fraction >.063 (silt and clay) was broken down only if that fraction was

20 percent or more of the total sample (if less, then only total percent fines is reported).

- 55. The organic content (volatile solids) found in a sediment sample was determined by standard procedures as outlined by Standard Methods (EPA 1974), and reported as percent volatile solids.
- 56. After each survey was completed, preserved nekton samples were brought to the NMFS Hammond Facility where they were measured (total length in mm) and weighed (total weight in gm). A subsample from each species at each station was designated for stomach analysis. The guts were cut at the throat and junction of the pyloric caecae (if present), removed, and placed in the appropriate vial according to the following length categories:

0 -	25mm	151 -	200mm	501 -	- 600mm
26 -	50mm	201 -	250mm		
51 -	75mm	251 -	300mm		
76 -	100mm	301 -	400mm		
101 -	150mm	401 -	500mm		

- 57. The vials were labelled, filled with 5 percent buffered formalin solution, and stored until analysis. The study design specified examining 10 stomachs containing food for each length category of each species at each station. This, of course, was not possible; however, all stomachs containing food (up to 10) were saved and the numbers of empty stomachs were recorded.
- 1.8. Stomach analysis followed Borgeson's technique (Borgeson, 1966). Each month vials were labelled for each station according to total length into which each fish species was grouped. Stomachs thought to contain food were put into each vial and covered with 10 percent formalin. Known empty stomachs were recorded. Later analysis showed some of the guts in

the vials to be empty and data were adjusted accordingly. One disadvantage to Borgeson's technique is that it does not allow computation of frequency of occurrance.

- 59. Each vial was later emptied into a watch glass and organisms were identified to the lowest feasible taxonomic category and enumerated. The volume of each category was determined by water displacement. For some of the small items, such as cladocerans and copepods, it was necessary to group specimens from several stations to have enough mass to record a volume. Accuracy of laboratory equipment had a lower limit of 0.05ml. Volumes less than this were recorded as trace.
- 60. Identifications of organisms were based upon the following sources: Banner (1948), Bradley (1908), Brodskii (1950), Chu (1949), Jaques (1947), Mizuno (1975), Needham and Needham (1962), Pennak (1953), Smith and Carlton (1975), Smirnov (1971), Usinger (1956), and Ward and Whipple (1918).

PART 3: RESULTS AND DISCUSSION

Zooplankton

- organisms found in plankton nets during surveys at Miller Sands, 1975 1976 is shown (Table B4). Taxonomic categories identified included 12 genera of Cladocera, 4 Copepods (and the juvenile form Copepodites), 4 taxa representing insects and larval fish forms. Ostrocoda, Anostraca, and Amphipoda were also represented. Although not included in the zooplankton list, two genera of the class Rotifera, Brachionus sp. and Asplancha sp. were common.
- 62. Results of zooplankton sampling during the nine baseline surveys are presented in Appendix Table B1, and are summarized in Table B4. Total population densities were numerically larger at cove stations (5 and 11) than at the river (12) or Snag Island reference stations. Total densities at stations 5, 11, 12 and Snag Island were 2466/m³, 3208/m³, 1975/m³ and 1623/m³, respectively. Zooplankton densities were low (21.5/m³) in March 1975; they increased with increasing water temperature reaching a peak of 5,984/m³ in September 1975. By November, the number of zooplankton per cubic metre had sharply declined (66/m³); thereafter declining through March 1976.

- 63. Three taxa dominated the zooplankton community at Miller Sands. The two cladocerans Daphnia and Bosmina and the copepod Cyclops. These three organisms represent 96% of the total zooplankton collected and were present at all sampling sites during the entire survey.
- 64. Daphnia the overall most dominant taxa increased to peak abundance in September (5,164/M³), then declined sharpley (see Table B5). Daphnia was dominant during August and September.
- 65. The population densities of the copepod *Cyclops* follow a normal curve, increasing gradually from March 1975 to September, then declining to a low in March 1976. *Cyclops* was dominant during the January survey, 1976.
- 66. Bosmina increased in abundance during May and reached a peak in July, decreasing during August and September, the period of highest water temperatures, increasing again in November as temperatures declined.

 Bosmina was the dominant zooplankton in May, July, and November, 1975, and again in May 1976.
- 67. Seasonally abundant taxa included *Eurytemora* sp (August to September) and *Alona* sp in May. *Alona* were present in small numbers throughout the year.
- 68. The population density of zooplankton at Miller Sands was lower in March and May 1976 than during the same period in 1975.

 This reduction in zooplankton was also reported by (Beak, 1977) at Columbia River kilometre 116.7.
- 69. Zooplankton were excluded from post-operational surveys because it was felt a qualitative analysis, based on bimonthly sampling, was not feasible.

Water Quality

- 70. Water flow conditions in the Columbia River were high in 1975, average in 1976, and were exceedingly low during the winter of 1976 and the spring-summer of 1977. Water quality parameters that were manifested as a result of these changes in flow probably overpowered subtile changes that could have developed as a result of the habitat improvement project at Miller Sands. However, all water quality parameters were analyzed in relation to differences between stations, between years, between ebb and flood tides, and between day and night. In addition, an analysis was made of all parameters during 1976-1977 comparing the cove stations, the habitat improvement area and the river site.
- 71. Water temperatures reached a maximum of 21°C earlier (July) in 1976 than in 1975; temperatures peaked at 20°C during August of 1975.

 Generally, there was less than 2°C difference between stations, and usually less than 1°C between tides, and between day and night. Mean temperature and ranges of all samples taken during the study are shown in Figures B6 and B7. Minimum water temperatures normally occur in the Columbia River during January/February; they were measured January of 1976.
- 72. The pH ranged from a low of 6.6 to a high of 9.0 during the study. The low occurred at Station 12 during the fall (September) of 1975. The high occurred at Station 11 during July 1976. Normally, high alkaline waters originate east of the Cascade Mountains and increase the pH of the waters of the Columbia River during spring run-off which peaks in June at Bonneville Dam (CRK 224, RM 140). The rain west of the Cascades normally causes high water in the tributaries during the winter and this

Figure B6. Mean and Range of Water Quality Parameters Taken at High Tide at all Stations, Miller Sands, 1975 - 1976

Figure B7. Changes in Water Quality Parameters, 1976 - 1977, at Miller Sands

run-off tends to lower pH in the Columbia River. Range of pH seldom varied 1.0 unit between stations, between high and low tides, and between day and night.

- 73. Salinity measured at the Miller Sands water quality stations did not exceed 0.5 0/00 except during July (Station 12) of 1977 where it reached 1.22 0/00 on a day/ebb tide. The increase in salinity could have been the result of the removal of 9 million cubic yards of material from the Columbia River Bar during the spring and summer of 1977. The removal of this material lowered the channel depth from 48 feet to 53 feet, with the exception of the one measurement above 1.0 0/00, rarely did salinity exceed 0.5 0/00 which normally would be conceded to fall within the accuracy of conventional measurement instrumentation.
- 74. Dissolved oxygen levels were compared throughout the study at stations 2, 3, 10, 11 and 12. High (13.0 ppm) levels occurred during March of 1975, 1976, and 1977. Low values occurred during July, August and September but rarely dropped below 8.0 ppm. There were no significant differences found in dissolved oxygen levels (at stations 2, 3, 10, 11 and 12) between stations, between high and low tide, or between day and night. The highest range of 0₂ values occurred during May 1977 at Station E, where the difference between the night ebb (8.7 ppm) and the day ebb (11.6 ppm) was 2.9 ppm. The ranges between stations, tides and day/night rarely exceeded 1.5 ppm and were always at acceptable ranges for aquatic organisms.
- 75. Water turbidity reached a maximum of 28 FTU's at Station
 12 during May 1975. In general turbidity was higher at comparable stations

- (2, 3, 10, 11, 12) in 1975 decreased from 1975 levels during 1976, and were at all time lows in 1977. Turbidity at stations 2, 3, 10, 11 and 12 rarely exceeded 10 FTU's during the 1977 sampling periods. However, 1977 was a record low flow year and turbidity in the lower Columbia River in general was exceedingly low. There was no significant difference between stations, tides, or day/night relationships.
- 76. Dissolved nitrogen gas (N₂) saturation reached a high 121.0 percent at Station 12 during May of 1976. Station 12 was the outside (river side) station and usually was higher than the cove stations (2, 3, 10, 11) and the intertidal stations (A through E) where the marsh habitat experiment was in progress. In general N₂ saturation that exceeds 115 percent for extended periods could result in aquatic organism fatalities in the shallow cove areas of Miller Sands. High saturation values can be directly correlated with peak run-off from east of the Cascades, and the spilling of large quantities of water through the numerous hydroelectric dams on the main stem Columbia and Snake Rivers, (the Snake River run-off peaks in May, the Columbia River peaks in June).
- 77. Ammonia was added to the water quality parameters in July of 1976. In general the range did not exceed .15 ppm and then only at three stations; i.e., Stations C, D, and l. Maximum levels occurred at station l, during September 1976 during a day/flood. Maximum levels occurred at Stations C and E during May 1977 at all tidal cycles, day and night. The highest level (0.20) occurred on the night ebb at Station E. In general higher levels occurred at the cove stations, 10 and 11, during the night than during the day during May 1977, but these differences overall were not statistically significant.

- 78. Total alkalinity was the second added parameter in July of 1976. Highest values occurred during May at the cove stations, and at the marsh habitat sites that were sampled during May 1977; i.e., Stations C and E. The range of alkalinity generally increased with time from July 1976 to July 1977 (see Figure B7). No visible trends were apparent in the station comparisons, nor with tidal cycle or day night comparisons.
- 79. The intertidal or marsh habitat sites were compared to the cove sites 2, 3, 10 and 11, and to the outside river site (Station 12) for the period July 1976 through July 1977. In general, the river was cooler than the cove, temperatures varied several °C, indicating a general warming of the cove and marsh habitat area. However, the warming of the cove had little effect on DO levels.
- 80. N₂ saturation levels were slightly and consistently higher at the river stations except when river water entered the cove through the cove channel during high river run-off. Turbidities remained fairly constant and at a low level throughout the study inside and outside the cove.
- 81. The 1976-1977 levels of turbidity rarely exceeded 10 FTO's, which by any standards is exceedingly clear water. More definitive work needs to be conducted on ammonia levels because during May 1977 there appeared to be differences between day and night levels at stations 2, 6, 10, 11, C and D, but these differences did not manifest themselves in the July 1977 sampling period nor at any time prior to the May sampling period. Data for water quality parameters can be found in Appendix Tables B2 and B3.

Nekton

- 82. A total of 13,755 fish representing twenty species were captured during the fifteen bimonthly surveys at Miller Sands (March 1975-July 1977). A list of these fish in descending order of abundance is presented in Table B6. Four species accounted for 93% of the total catch: juvenile chinook salmon, Oncorhynchus tshawytscha; peamouth, Mylocheilus caurinus; starry flounder juveniles, Platichthy stellatus; and threespine stickleback, Gasterosteus aculeatus.
- 83. Total catch data by station and survey are presented in Appendix Table B4 and Appendix Table B5. Juvenile chinook salmon, threespine stickleback and juvenile starry flounder were captured at all beach seine stations and were present during each survey. Peamouth chub occurred at all stations but were not captured during the March 1975 or January 1976 surveys (Figure B8).
- 84. Monthly catches of the four dominant species at beach seine sites during the baseline inventory (March 1975-May 1976) are presented in Figure B8. Figure B9 is the monthly catches of these species during the post-operational phase (July 1976-July 1977). The square root transformation of the total monthly catch data is used.
- 85. Monthly catch and catch per unit of effort for the period March 1975 to May 1976 is presented in Table B7, and represents catch by beach seine, during daylight hours only. In July 1976 the fishing effort was expanded to include fishing with fyke nets and at night. Thus, Tables B8 through B11 are summaries of the monthly catch of the dominant species at all stations, with beach seines at night (Table B8), daytime (Table B9)

Figure B8. Monthly Catches of Nekton (expressed as \sqrt{N}) of Important Species Captured by Beach Seine at Miller Sands, March 1975 - May 1976

Figure B9. Monthly Catch of Important Species of Nekton (expressed as \sqrt{N}) Captured with a Beach Seine and Fyke Nets at all Stations, July 1976 - July 1977

and for fyke nets at night (Table Bl0) and during the day (Table Bl1).

The tables include total fish captured and catch per unit of effort.

A summary of CPUE findings for the entire study period is given in Table Bl2.

- 86. Juvenile chinook salmon were the most important economic species and represent 42 percent of the total catch. Chinook juveniles were the numerically dominant species captured at Miller Sands in March and May 1975, 1976 and 1977, also during August, September (1975) and in July 1977 (Figures B8 and B9).
- 87. During the baseline inventory 2446 juvenile chinook were taken at Station 12, the river index site (See Table B7). This accounts for 68% of all chinook captured during the baseline study.
- 88. The peak catch of juvenile chinook occurred in May 1976. The respective catch per unit effort (CPUE) 536.4 (Table Bl2). The early peak during March 1977 may be associated with the low flow conditions which prevailed in the Columbia River during 1976-1977.
- 89. Peamouth, Mylocheilus caurinus, was the dominant species July and September 1976 at Miller Sands during the post-operational phase. This increase was mainly due to the initiation of night fishing during this study period. The night catch of peamoush was 2126 (Table B8) as compared to 664 fish taken during the day (Table B9). The overall peak catch of peamouth occurred in July 1976 when 1442 individuals were captured at Station 5 during the night survey (Table B8).
- 90. Peamouth were also the most common fish captured by fyke nets at the march development site; of 702 fish captured 434 were peamouth; 121 during the night (Table Bl0), and 310 during the day (Table Bl1).

- 91. Juvenile starry flounder were captured during each survey and are the third most common species present at Miller Sands. Peak occurrence during the three years was during July 1976 and the peak CPUE (71 fish) occurred the same month.
- 92. Threespine stickleback were also present at Miller Sands during all surveys and were captured at all sites. This species ranged from a low CPUE of 0.4 in August 1975 to a peak of 34 fish in September 1976 (Table Bl2).
- 93. Although these four species represent 93% of the total catch at Miller Sands, additional economically important sport or commercial species were captured. These were coho, chum, and sockeye salmon, Oncorhynchus spp; steelhead and cutthroat trout, Salmo spp; longfin smelt, Spirinchus sp; the eulachon, Thaleichthys pacificus; and the American shad, Alosa sapidissima.
- 94. During the baseline inventory scale samples were collected for age determination of the important species. Ten fish of each major species were weighed, measured and age determined. During the post-operational phase this effort was expanded in conjunction with the food utilization study. Ten fish from each of the following length categories were sampled at each site during each survey.

0 - 25mm 151 - 200mm 26 - 50mm 201 - 250mm 51 - 75mm 251 - 300mm 76 - 100mm 301 - 400mm 101 - 150mm 401 - 500mm

95. The age, number, mean weight and length of the five dominant species taken during the post-operational surveys is presented in Appendix Table B7.

- 96. Age for juvenile chinook, peamouth and largescale sucker was determined from scale annuli. The age of threespin stickleback and starry flounder was determined by the length frequency method. (Jones and Hynes, 1950; Haertel and Osterberg, 1966; Scott and Crossman, 1975).
- 97. Fish in the first year (0-1 year old) were called age class 1. Fish older than age class 4 (3-4 years old) were combined under the heading age class 4.
- ^{98.} During the baseline studies the age class, mean weight and length was determined for three species; chinook, starry flounder and peamouth chub. Age determination was made for the above dominant species and also for threespine stickleback and largescale sucker during the post-operational phase. The age class by month for the three dominant nekton species captured at Miller Sands during all surveys is shown in Table B13.
- 99. Juvenile fall chinook age class 1 dominate the chinook catch in March, May, and July during all three years. Spring chinook, which migrate during their second year, were captured during late summer and fall and may remain in the estuary until the following spring. This is indicated by the 22 age class 2, and the nine age class 3 fish captured in March 1977. The larger percentage of these older chinook captured during the spring of 1977 is probably due to the low flow conditions. Alabaster (1978) states that significant numbers of chinook held over throughout the Columbia River in 1977. Mean weight and length by age class for these dominant species is presented in Appendix Table B6 and Appendix Table B7.

- 100. The mean weight and length for the 1175 juvenile chinook sampled during the Miller Sands surveys was 10.3 grams and 88.7 mm. Eighty-nine percent of juvenile chinook captured were age class 1, fall chinook.
- out the lower Columbia River. Both age classes 1 and 2 were present during each survey. Older fish of this species are not usually taken in fresh water. The increase in those fish, age class 3, from July 1976 through July 1977 would indicate a change in conditions possibly due to low flow. Mean weight and length for the 1045 juvenile starry flounder was 10.5 grams and 76.4 mm. As with chinook age class 1, starry flounder age class 1 were the major class present at Miller Sands.
- 102. All five age categories of peamouth chub were present at the study area; 42 percent were age class 1; 32 percent age class 2; 37 percent age class 3 and 7 percent were age class 4, while 15 percent were older than age 4. Mean weight of the peamouth was 25.2 grams and mean length was 108.9 mm.
- 103. Nekton in order of mean annual abundance and average weight per individual for all species captured during the post-operational survey is shown in Appendix Table B8.
- 104. Student's t-tests were performed to determine if there was a difference between the night and day beach seine catches at Miller Sands during the post-operational surveys. At the 95 percent confidence interval there was no statistical reason to conclude the catches were different. The Wilcoxon-Mann-Whitney rank sum test was also performed with the same results.
- 105. Although statistically there appears to be no overall difference, there are monthly variations (Figure Bl0).

Figure Bl0. Variations Petween Day and Night Beach Seine Catches at Miller Sands, July 1976 - July 1977 (Variations Expressed as the \sqrt{N}).

- 106. A comparison of the nekton captured by beach seine (during the day) at Stations 2, 3, 10 and 11 is shown in Table B14. These four stations were sampled during each of fifteen surveys, March 1975 to July 1977.
- 107. Total catch was highest during 1976, this reflects a catch of 388 chinook at Station 11 during May and also 368 starry flounder at Station 3 during July of this year. Both of these catches are above normal.
- 108. The number of fish captured during the three months of 1977 decreased from the highest level in March to the lowest value during any of the July surveys. The high catches at Station 2 and Station 3 during March 1977 reflect a larger than normal catch of juvenile chinook during this month.
- 109. Changes between sites and stations during these three months generally reflect a higher than normal occurrence of a given species. An exception is the decreasing total catch in 1977 which again probably indicates changes due to the 100 year round drought during 1976 and 1977.
- 110. Beach seine sites during the baseline inventory and post-operational phase of the study are classified according to the number of nekton captured at each site. Fyke net sites in the intertidal area and at cove Station 6 are also classified from a data matrix from which a Bray-Curtis dissimilarity analysis was done (Clifford and Stephenson, 1976). A matrix was generated between all possible pairs of stations using the formula:

$$D_{jk} = \frac{\sum_{i} |x_{ij}|^{-} |x_{ik}|}{\sum_{i} (x_{ij} + x_{ik})}$$

- and x is the square root transformed values of the ith species in the jth station. The value of dissimilarity is constrained between 0 and 1 where 0 represents complete similarity and 1 complete dissimilarity between stations. Stations were then clustered into similar groups using group-average sorting which joins the stations based on the smallest mean dissimilarity value between individual stations or groups of stations already joined.
- 112. Following are dendrograms of the Bray-Curtis treatment of combined data during the baseline inventory, post-operational cove stations and intertidal marsh habitat sites.

Baseline Inventory March 1975 - May 1976

113. The dendrogram shows all stations joined at the .3 level are more similar than dissimilar. Station 12, the river index site, is the most dissimilar, while stations 10 and 11 are the most similar. Stations 10 and 11 are located on the Sand Spit.

Post-operational Cove Beach Seine Sites July 1976-July 1977

- 114. Stations 9 and 10 located on the sand spit are shown to be the most similar, Station 5 located on the sand spit at the upper end of the cove is most dissimilar. Stations 3 and 11 located at the downstream end of the cove are similar but dissimilar to those stations located upstream within the cove. This may be due to the low flood conditions during this period and the lower than normal water levels within the cove.
- 115. The following dendrogram is a comparison of the intertidal marsh habitat sites which were sampled by fyke nets. Also included is the cove fyke net station (5).

• Intertidal Marsh Habitat Sites A Through D and Cove Fyke Net Site 6

116. The marsh reference sites A and E are most similar. Station D, the downstream intertidal site, is the most dissimilar of the marsh sites. This may be due to the large number of peamouth captured at this site during September 1976. Station 6, the cove fyke station, is the most dissimilar.

Benthos

- 117. A computer was used to examine some aspects of the 1975-1976 data. A dissimilarity matrix was generated between all possible pairs of stations using the Eray-Curtis Dissimilarity Index.
- 118. The value of dissimilarity is constrained between 0 and 1, where 0 represents no dissimilarity or complete similarity between the two stations. The stations were then clustered in similar groups using a group average sorting strategy. This strategy in which the stations are successively joined based on the smallest mean dissimilarity value between individual stations or groups of stations already joined.
- 119. The results of cluster analysis of the benthic data were compiled into a denogram (Figure Bll). Species were grouped using similar techniques as the fish data except that species values were standardized using a square root transformation and by dividing each species value by the sum of the values for that species at all stations.
- 120. The biomass at each station was averaged throughout the year to show monthly and annual totals. All raw data can be found in Appendix Table B9.
- 121. All raw data was analyzed by computer to obtain the required tables and figures. The BraypCurtis dissimilarity analysis comparing stations, taxa, and time were not conducted as in the 1975-1976 study. The data were analyzed for monthly numerical abundance and comparisons made in abundance of taxa at subtidal and intertidal sites. All raw data has been compiled and can be found as a computer print-out in Appendix Table Blo.
- 122. It was determined due to the relatively large sieve size some nematodes, although extremely numerous, were passing through the mesh and

quantification was not accurate. They were not enumerated as was done in 1975-1976. Insect families were combined into one heading -- insect larvae.

- 123. The sites fell into three similar groups. Stations

 1 and 7 were similar in composition (Bray-Curtis value .23)

 stations 5 and 6 were similar in composition (.16). This grouping

 relationship is illustrated by the dendogram in Figure Bll.

 Nematodes, Neomysis, Chironomidae and Oligochaete were most abundant at stations 2, 3 and 4 and least abundant at station 1 and 7. Corophium,

 Corbicula, Gastropods, Polychaetes and aquatic insects appeared to be equally abundant at all stations. Anisogammarus, Platyhelmenthes, Adonata were rare at all stations. Fish eggs were found only at station 7 in

 January and March 1975. These eggs were probably deposited by Eulachon,

 Thaleichthys pacificus, which is known to spawn during the winter in the mainstream of the Columbia River.
- 124. Stations were analyzed to determine seasonal trends in the benthic community. It was determined that the species composition and their number are relatively stable throughout the year. This is illustrated in Figure Bll.

March, November, January exhibited similar species numbers

(Bray-Curtis value .16) May, July, September, had a value of .23 and
all stations were joined at .25. Analysis of species composition and
seasonal trends demonstrated that there is more species variation between
stations than there is from summer to winter. This analysis is important
in demonstrating that each station has a characteristic community that

March 1975 - May 1976

Site-Species

Figure Bll.Dendogram's based on group-average sorting of Bray-Curtis dissimilarity values between all possible pairs of samples.

0 = Complete similarity 1.0 complete dissimilarity.

is somewhat stable throughout the year and differs from other areas in the river.

- and converted to biomass in grams per square metre. This information shows monthly variations in biomass and is a means of determining the highest standing crop stations throughout the year. Station 3 clearly showed the greatest annual biomass of 371 grams (Table B15). Stations 2, 4, 5 and 6 were very similar; their annual biomass ranged between 151 165 grams. Station 1, located in the river, was the least dense having a total of 68. These findings were similar to the findings when stations were analyzed for species composition. Table B15 also indicates each station maximum biomass generally occurred in the spring.
- arranged in descending order in Table B16. Oligochaetes were the most numerous groups averaging 3030/m². Corophium and Chironomids were the only species that exhibited marked seasonal extremes. In March 1976 the Corophium population was most numerous; 21,009 were captured and in August the population was least abundant, 1,159 were captured. Chironomids were numerically stable until May when a marked increase was recorded. Of 209,184 total organisms captured in the study 190,384 or 91% were Oligochaetes and Corophium.
- 127. The mean annual abundance of each taxon is arranged in descending order in Table B17. The amphipod *Corophium* was the most numerous group at Miller Sands, averaging 942.4/m² throughout the year. Second in abundance were the Oligochaete worms averaging 731.6/m². Chironomidae insect larvae were third in abundance, averaging 251.5/m². The small

Figure Bl2. Changes in Total Abundance of Important Macroinvertebrate Taxa at Seven Stations in 1975 - 1976.

clams Corbicula were $128/m^2$. The remaining seven taxa were relatively sparse, under $16/m^2$.

- 128. A total of 22,052 Corophium and 17,119 Oligochaetes were captured in the 468 grabs at 27 stations throughout the study. These two groups combined represented approximately 80% of the total organisms present at the Miller Sands, Oregon study sites.
- 129. Stations were not compared individually as was done in 1975-1976. They were grouped and discussed by similar elevations, stations designated A, B, C, D, E, were stations located at the 0.3m contour. Stations designated A, B, C, D, E, were located at the 1.2m contour. Stations designated A, B, C, D, E, were located at the 1.2m contour. Stations designated A, B, C, D, E, were located at the 1.8m contour. Cove stations were under water continually and are number 1-15.
- 130. The average catch per grab (0.5/m²) of the six most numerous organisms at each of the four elevations is listed in Table B18. This analysis demonstrated that the subtidal cove stations were generally most productive with the exception of Chironomids. The second most productive stations were those on the 1.2m contour. This was the most productive area for the insect larvae.
- 131. Corophium was the densest organism attaining a maximum of 601.6 per grab at the cove stations. They became progressively less dense as station elevations increased, reaching a minimum density of zero per grab at the 1.8m contour. Cligochaetes were the second densest organism, also reaching their maximum of 395.3 at the cove sites and the minimum at the 1.8m stations. Chironomid were third in density but

attained their maximum at either the 0.3 sites apparently doing better intertidally than either *Corophium* or Oligochaetes. The remaining insect larvae and Gastropods attained their maximum density at the 1.2m contour site.

- seen in Figure B13. In general, little numerical fluctuation was observed in the benthic community. Most organisms appeared to be somewhat numerically stable throughout the one year study. *Corophium* and Chironomids were the only two groups that did show some seasonality. *Corophium* reached their peak numbers during the November to March period and their lowest numbers during May to July. Chironomids appeared to be very stable throughout the year but increased substantially during the summer.
- taxons (excluding *Corbicula*) were calculated for four elevations (Table B19). Results of biomass measurements were similar to species distribution. The highest biomass was found in the subtidal cove station. An average of 5,8120 g/m² dry weight was taken at the cove stations. Second in biomass were the substations at the 0.3m intertidal level. The least biomass, .44020 g/m² found at the 1.8m elevation sites. Cove stations had 13 times this biomass. *Corophium* and Oligochaetes represented 90 percent of the total biomass at the cove stations. At the 0.3m elevation Chironomids contributed the major (53.9%) portion of the biomass. Table B19 is also useful in estimating standing crop biomass. *Corbicula* and Gastropod dry weights are misleading, disregarding them, Oligochaetes contributed the highest average biomass of .3103 g/m² in the Miller Sands

Figure Bl3. Changes in Total Abundance of Important Macroinvertebrate Taxa at 26 Stations in 1976 - 1977.

region, although *Corophium* were more numerous. Oligochaetes appeared to be the only organism capable of coping with the frequent tidal exposures at the 1.2 and 1.8m stations they comprised 79.3 and 85.4% of the total biomass sampled at those two elevations.

134. A phylogenetic listing of benthic invertebrate species found at Miller Sands during the study can be found in Appendix Table Bll.

Substrate

135. There is considerable evidence (Lindroth 1935, Jones 1950, Buchanan 1958, Longhurst 1958, Sanders 1958) that the physical properties of the substrate are important for the structure and distribution of benthic communities. The mean annual sediment sizes and percentage composition of volatile solids in sediments collected at the Miller Sands disposal site are shown in Table B20. Gravel is defined as that portion of the sample, the particles of which measure greater than 2.38 mm in diameter; sand particles measure 0.044 to 2.37 mm; and silt and clay is comprised of particles that measure less than 0.044 mm.

136. Gravel comprised less than 1 percent of each sample collected. Sand comprised nearly 90 percent of all samples and frequently constituted over 98 percent of the sample. Over 75 percent of the sediments collected at all transects at all elevations and at the cove stations consisted of sand ranging in size from 45 to 149 microns and nearly 50 percent of all sediment collected was sand ranging from 75-149 microns. Silt and clay comprised less than 5 percent of most samples but did range as high as 11.95 percent of the mean annual percentage of sediments collected at elevation 1 of transect E. The occurrence of silt and clay at elevation 3 for all transects was consistently less than at the other elevations and the cove stations. Particles finer than 44 microns were further divided into three subclasses: 25-44, 10-25, and 5-10 microns and are presented near the bottom of Table B20. There does not appear to be a significant difference in the distribution of the three subclasses of particles finer than 44 microns among the various sampling

stations. It should be noted that the individual percentage composition of these subclasses will not always equal the total value shown for the percentage composition of particles finer than 44 microns because the testing laboratory did not grade the sample further when it constituted less than about 2 percent of the sample. Values less than 2 percent are included in the table representing total values of particles finer than 44 microns but are treated as zeroes in the presentation of the three subclasses, thus reducing the averages when their total is divided by the number of samples collected (18) at each sampling station.

- 137. The highest mean annual percentage of volatile solids in the sediments of all the stations was 3.31 percent and occurred in transect B at elevation 1. The lowest mean annual percentage was 0.81 and occurred in transect D of elevation 2.
- 138. Figure B14 shows the change by time in percentage composition of sediments collected at each sampling elevation by particle size groupings of (1) gravel (greater than 2.38 mm), (2) sand (0.044-2.37 mm), and (3) silt and clay (less than 44 microns). Distribution of sediments by particle size was similar at each elevation throughout the sampling period.
- 139. Changes in volatile solid content of sediments at the various sampling stations during the course of the sampling period are shown in figure B15. The changes were negligible, less than 2 percent, at each elevation.

Figure Bl4. Change by Time in Percentage Composition of Sediments
Collected at Each Sampling Elevation by Particle
Size Grouping

Figure Bl4 - Continued

Figure B14 - Concluded

Figure B15. Change in Volatile Solids of Sediments (associated with Macroinvertibrates) Over Time

Food Utilization

140. The results described in this section are based upon data located in Appendix Table B12 which is the complete data matrix for the food utilization study. Detailed descriptions have been prepared for the main nekton species encountered at the Miller Sands study area. Table B21 is a species list of all items consumed by all species of fish at Miller Sands.

Peamouth Chub

	1976			1977			
	Jul	Sep	Nov	Mar	May	Jul	
Total fish examined	185	365	34	4	68	127	
Total empty stomachs	185	363	34	4	68	126	

141. Cove stations:

All peamouth chub collected at the cove stations had empty stomachs.

142. Intertidal stations:

Two peamouth captured in September contained digested material and one sampled in July 1977 contained a small amount of unidentified vegetation.

Coho Salmon

	1976			1977		
	Jul	Sep	Nov	Mar	May	Jul
Total fish examined	0	0	0	0	28	5
Total empty stomachs	0	0	0	0	10	3

Cove stations:

143. Few coho salmon were collected during this study. Coho were captured during the day once; therefore, day to night comparisons cannot be made. *C. salmonis* was the most important food item consumed and made up 13 to 100 percent of the total numbers in May for fish of all sizes and 100 percent for fish 101 to 200 mm in July 1977. *C. salmonis* made up 48 to 100 percent of the volume during this time. Fish 51 to 150 mm consumed chironomid pupae in May.

Intertidal stations:

No coho salmon were sampled from the intertidal stations.

Chum Salmon

	1976			1977		
	Jul	Sep	Nov	Mar	May	Jul
Total fish examined	0	0	0	26	16	0
Total stomachs empty	0	0	Ö	2	2	0

Cove stations:

144. Fish of all sizes captured during the day in March and May consumed chironomid pupae accounting for 35 to 100 percent of the numbers and 48 to 100 percent of the volume. Also consumed were N. mercedis and chironomid larvae in March and T. pacificus larvae in March and T. pacificus larvae in May.

The night sampling resulted in chironomid pupae accounting for 77 to 100 percent numerically and 26 to 100 percent volumetrically.

Also consumed were *C. salmonis* in March and *D. longispina* in May.

Intertidal stations:

No chum salmon were sampled at the intertidal stations.

Chinook Salmon

	1976			1977			
	Jul	Sep	Nov	Mar	May	Jul	
Total fish examined	25	37	18	225	213	141	
Total empty stomachs	7	5	O	21	52	30	

Cove stations:

- 145. Fish of all sizes captured during the day consumed large numbers and volumes of *C. salmonis* and chironomid pupae. A balance was observed; when few *C. salmonis* were eaten, many chironomid pupae were consumed and vice versa. Chinook 26 to 150 mm consumed few *C. salmonis* and many chironomid pupae while those fish over 151 mm consumed many *C. salmonis* and few chironomid pupae.
- 146. Daphnia longispina composed 91 to 95 percent numerically in July 1976 at Stations 3 and 11, and 96 percent in September at Station 3. Diptera adults made up greater than 90 percent of both number and volume at Station 11 in November. Hymenoptera (ants) were eaten by fish larger than 101 mm at Station 5 in March as were diptera adults. Mysids, N. mercedis, were infrequently consumed July through November 1976.
- 147. The night feeding pattern was similar with *C. salmonis* accounting for much of the stomach contents March through July 1977, especially March. Chironomid pupae were important food items November 1976 through July 1977, especially in May. *N. mercedis* were important to the chinook diet for fish over 101 mm. While they occurred during the entire study, two peaks were noted in September and May when they occasionally accounted

for 100 percent of the stomach contents.

148. The cladoceran, *D. longispina*, was important in July 1976 and 1977 for fish over 51 mm. When *D. longispina* were consumed they accounted for more than 88 percent of the volume. Hymenoptera were consumed by fish over 101 mm at Station 11 in September, and in November 1976 accounted for over 77 percent of the number and weight of the stomach contents.

Intertidal stations:

149. Chironomid pupae accounted for over 77 percent of the total number and volume in July 1977. *C. salmonis* and Ephemeroptera were the two main diet components for March supplemented by occasional mysids, *N. mercedis*, and an Odonata nymph.

Starry Flounder

	1976			1977		
	Jul	Sep	Nov	Mar	May	Jul
Total fish examined	212	81	108	40	93	198
Total empty stomachs	80	58	81	23	81	119

Cove stations:

150. Chironomid larvae made up over 80 percent of the diet numerically for most fish under 100 mm in day samples from July 1976 and 1977. The exception was Station 11 where D. longispina and C. salmonis were important. C. salmonis was also important at Stations 9 and 10 and, for starry flounder over 101 mm, at Stations 3 and 10. Juvenile clams, C. fluminea, were eaten by flounder over 100 mm at Stations 3 and 10. Oligochaetes made up 50 to 86 percent of the numbers at Station 3 in July 1976 but did not contribute significantly to the total volume.

151. Chironomid larvae made up 30 to 100 percent of the number and volume of the stomachs of most flounder under 100 mm collected at night during July 1976 and 1977. *C. salmonis* were important in September and November at Stations 9 and 3, respectively, and at Station 10 in July 1976. Chironomid pupae comprised over 40 percent of the number and volume at Station 9 in July 1977. Starry flounder over 100 mm consumed *C. salmonis*, chironomid pupae, and unidentified fish in March at Station 3 and chironomid larvae in November.

Intertidal stations:

Starry flounder between 51 and 75 mm consumed 25 percent

C. salmonis and 75 percent oligochaetes although each contributed nearly equally to the volume.

Threespine Stick	Κl	Le	back
------------------	----	----	------

	1976			1977		
	Jul	Sep	Nov	Mar	May	Jul
Total fish examined	109	60	25	79	53	110
Total stomachs empty	51	44	11	19	18	85

Cove stations:

152. All threespine sticklebacks sampled were 75 mm or less. Planktonic organisms were dominant in the diet of day samples although \mathcal{C} . salmonis was the sole diet in March at Station 11 and chironomid pupae made up over 50 percent of the diet in July 1977 at Station 5. The copepod, $E.\ hirundoides$, accounted for more than 77 percent of the number and 29 percent of the volume in May at Stations 2 and 3 while Diaptomus

sp. was important in July 1977 at Station 10. P. longispina accounted for over 60 percent of the number and 35 percent of the volume in July 1976 at Stations 3, 9 and 10; in September at Station 3; in March at Station 5; in May at Station 11; and in July 1977 at Stations 9 and 10.

153. Nocturnal samples showed a similar pattern although *C. salmonis* was more prevalent, especially in March when it accounted for 10 to 100 percent numerically, and 35 to 100 percent volumetrically. *E. hirundoides* was especially important in September and November at Stations 2, 3 and 11, and in July 1976 at Station 9. *D. longispina* contributed to the July 1976 night diet in amounts exceeding 90 percent numerically and volumetrically at Stations 2, 5,9 and 10. Ostracods accounted for 27 to 50 percent of the diet of some fish in March at Stations 2 and 5.

Intertidal stations:

154. Oligochaetes accounted for all the diet in November and C. salmonis in March. D. longispina made up over 75 percent of the number in July 1976 although it was not significant volumetrically.

Chironomid pupae accounted for 97 and 99 percent of the number and volume in July 1977.

Largescale Sucker

		1976		1977					
	Jul	Sep	Nov	Mar	May	Jul			
Total fish examined	39	31	14	12	6	1			
Total stomachs empty	39	31	14	12	6	1			

All largescale sucker stomachs were empty during this study.

Prickly Sculpin

		1976	1977				
Total fish examined	Ju'l	Sep	Nov	Mar	May	Jul	
Total fish examined	9	10	7	0	0	0	
Total stomachs empty	6	1	3	0	0	0	

Cove stations:

155. The stomachs sampled contained starry flounder juveniles at Station 3 in July 1976. At Station 6 (a night sample) N. mercedis and unidentified fish completed the diet in November.

Intertidal stations:

156. In September *C. salmonis* contributed 62 percent of the number and *N. mercedis* 29 percent, while unidentified fish made up 95 percent of the volume. *N. mercedis* was the sole diet item in November.

Pacific Staghorn Sculpin

		1976			1977	
	Jul	Sep	Nov	Mar	May	Jul
Total fish examined	0	2	20	55	80	103
Total stomachs empty	0	2	9	14	17	4 9

Cove stations:

157. *C. salmonis* dominated the daytime diet in March and May making up 33 to 100 percent of the total diet except at Stations 3 and 6 which had no staghorn sculpin in March. Chironomid larvae were important at Stations 3 and 6 in July, accounting for 80 to 100 percent numerically and less volumetrically. *N. mercedis* accounted for 29 to 67 percent of

the diets in November and May at Stations 11 and 10, respectively.

158. The night samples showed *C. salmonis* to account for much of the diet November through July 1977 supplemented by *N. mercedis*. A juvenile chinook salmon was consumed by a staghorn sculpin larger than 101 mm in July 1977 at Station 10.

Intertidal stations:

C. salmonis in March and chironomid larvae in July 1977 were the dominant food items consumed by Pacific Staghorn sculpin 26-50 mm total length.

159. Table B22 (based upon Appendix Table B13) lists the food items consumed by all fish captured at Miller Sands in decreasing order of abundance based upon total numbers. Four species make up 96 percent of the total number of food items consumed: Daphnia longispina, Eurytemora hirundoides, Corophium salmonis, and chironomid larvae and pupae. Of these, the first two are planktonic and the third benthic, while the last are epibenthic to drift organisms.

160. The planktonic items were usually consumed in quantity and often composed most of the stomach contents. Chironomid larvae and pupae were often found together with *C. salmonis* in the stomachs.

161. Figure Bl6 shows the seasonality of the dominant food items plus N. mercedis based on percent numbers (based upon Appendix Table Bl3. Distinct peaks occur for all items:

Chironomid larvae July 1976, March 1977, July 1977

Chironomid pupae March 1977, May 1977

Corophium salmonis March 1977

Daphnia longispina July 1976, July 1977

Eurytemora hirundoides November 1976, May 1977

Neomysis mercedis September 1976, March 1977

Consumption of *E. hirundoides* peaks in November when the other dominant food items were not eaten. *C. salmonis* and chironomid pupae increased in the diet along an almost parallel course from November to March although peak *C. salmonis* consumption occurs in March and chironomid pupae in May. *D. longispina* consumption peaks twice, July 1976 and July 1977. Small peaks were noted for *N. mercedis* in September and March. Peak consumption of chironomid larvae occurred in July 1976 and March 1977.

- 162. Table B23 lists the mean annual percent number of food in the nekton stomachs of important species and in the benthic environment.

 Since many of the fish consumed planktonic organisms, this table shows only the relationship to the benthos and not to the Miller Sands environment as a unit.
- 163. Peamouth chub and largescale sucker did not contain full stomachs. The chinook salmon consumed oligochaetes in a percentage far less than the percentage of their occurrence in the benthos. However, they consumed D. longispina, N. mercedis, C. salmonis, A. confervicolus, chironomid larvae and pupae, and diptera in percentages greater than their percentage occurrences.
- 164. Starry flounder and threespine stickleback related to the benthos in a similar way, consuming most items in greater proportion to that in which they occur in the benthos. These means are not weighted

averages but merely indicator means. Staghorn sculpin and prickly sculpin also displayed a similar relationship to the benthos, consuming most items in a greater proportion than that in which they occur in the benthos. Prickly sculpin did not utilize the amphipods *C. salmonis* and *A. confervicolus* as much as did the staghorn sculpin.

165. Distinct seasonal feeding trends occurred for fish sampled from Miller Sands (Figure Bl6.) While the chart indicates the pattern derived from the total data matrix, seasonal patterns of selected fish species correlate to Figure Bl6, hereafter called the master chart. Peamouth chub and largescale sucker did not contain food and coho and chum salmon were small samples; seasonal trends were not noted. The following comparisons were made:

- Chinook salmon fed heavily on C. salmonis and chironomid pupae March through July 1977, corresponding to the bimodal peak of the two species. Heavy predation on D. longispina in July fits the master pattern.
- 2. Starry flounder consumed chironomid larvae in July, September, and November 1976 and July 1977, following the general plot of the master chart. During March, C. salmonis and chironomid pupae were both consumed. As with the chinook, starry flounder fed on D. longispina in July, in accordance with the charted peak.
- 3. Threespine stickleback consumed E. hirundoides July through November 1976 which corresponds to the master chart.
 - D. longispina peak consumption was in July 1976 and 1977.

Figure Bl6. Bimonthly numerical percentages of six main food items consumed by all nekton at Miller Sands, Columbia River, July 1976 through July 1977.

- in accordance with the charted peak. *C. salmonis* and chironomid pupae were consumed most often March through July 1977.
- 4. Prickly sculpin were not sampled often but those examined had consumed N. mercedis in September, corresponding to the peak in Figure B16.
- 5. Staghorn sculpin consumed *C. salmonis* March through July 1977 which matches the declining side of the peak. However, in this case chironomid pupae were not eaten together with the *C. salmonis*. Instead, chironomid larvae were preyed upon March through July which spans two of the three overall peaks.
- Appendix Table B13) yet several prey species were dominant. Peamouth chub and largescale sucker stomachs did not contain identifiable food. Chum and coho were collected in small numbers and the data suggests they are primarily benthic and epibenthic feeders, occasionally consuming zooplankton.
- 167. Chinook salmon consumed the greatest variety of items yet primarily fed on benthic and epibenthic chironomid pupae. In July planktonic D. longispina were consumed and N. mercedis were eaten occasionally throughout the study.
- 168. Starry flounder, staghorn sculpin, and prickly sculpin all fed on *C. salmonis*, chironomid larvae and pupae, *N. mercedis*, and small fish. In addition, starry flounder also consumed oligochaetes and *C. fluminea*.

- 169. Threespine stickleback was predominantly a planktonic feeder on D. longispina and E. hirundoides and also consumed C. salmonis and chironomid pupae.
- 170. The sizes of the fish did not significantly affect the food habits of most fish. Chinook salmon greater than 100 mm consumed more mysids and insects than did fish under 100 mm. Staghorn sculpin over 75 mm also consumed slightly more mysids than did the smaller sculpin. While the large fish were able to consume greater quantities of food, the species composition was similar for all sizes.
- 171. Comparing data between day and night samples and among areas presents a problem in food utilization studies. A fish may have fed during the day and been captured at night. Similarly, a fish may have eaten in one area and then swam to the area where it was captured.
- 172. Data from the Miller Sands food utilization study showed few differences between day and night samples, between cove and intertidal areas, and among stations within the cove area. N. mercedis were consumed slightly more during the night samples than during the day.
- 173. With the exception of peamouth chub and largescale sucker, the dominant nekton species captured at Miller Sands contained food during the entire study and are feeding in the area. The four dominant prey items have been recognized as being important to salmon and other species of fish in the lower Columbia River estuary (Craddock et al. 1976, Durkin et al. 1977a, Durkin et al. 1977b).

PART IV: SUMMARY AND CONCLUSIONS

BENTHOS

174. The 1976-1977 data showed conclusively the greatest density of organisms existed at the subtidal and 0.3m elevation sites. Results of sediment analysis showed that sediment size and types were similar for intertidal and tidal areas. Sand, those particles between 0.044 to 2.37mm, comprised about 90-98% of all samples at all elevations. Organic matter was between 8.8l and 3.3l% and there was no significant seasonal changes. Density of organisms is therefore not, in this situation, a function of sediment size and types, but density differences were more a function of tidal exposure and wave action. Maximum numbers occurring where water was calmer and they were continually submerged.

and the 1976-1977 study because stations have been changed and added, the Miller Sands region has been built up and methods of analyzing data were dissimilar. There are some important comparisons that can be mentioned. Tables B15 and B18 show the average number of organisms per square metre is much higher the first year than the second. Oligochaetes were 3030/m² the first year and 942/m² the second year. There are also more variety of organisms found the first year. The clam, Adonata, the amphipod, Echaustorius, the flatworm, Platyhelmenthes, and the mysid, Neomysis, were not found in 1976-1977. Gastropods were grouped together under one heading but two types are present. Approximately 87% belong to the family Amnicolidae and the remaining 13% were the genus Plearocera. In both

studies Oligochaetes, *Corophium*, and Chironomids constituted approximately 92-94% of the total organisms captured at Miller Sands.

NEKTON

- 176. The Miller Sands nekton studies cover the fifteen survey periods March 1975 July 1977, as summarized below:
 - Twenty species of nekton were captured during this study period.
 - 2. Four of these were dominant and accounted for 93 percent of the total catch; i.e., juvenile chinook salmon, peamouth chub, starry flounder, and threespine stickleback.
 - 3. Juvenile chinook, the most important economic species was present during each survey with peak catch occurring in May 1976. This species was distributed throughout the cove.
 - 4. Peamouth chub was the most abundant species captured at the intertidal marsh habitat site. Peamouth was the major species captured at all fyke net sites and at beach seine stations number 5 (the marsh habitat site).
 - 5. The largescale sucker was the dominant species by total weight (76,489 grams). The carp was the largest individual species captured with an average weight per individual of 1445.7 grams.
 - 6. Main age class of the five dominate species aged are as follows:

Peamouth Chub	age class	1
Chinook Salmon	age class	1
Starry Flounder	age class	1
Threespine Stickleback	age class	4
Largescale Sucker	age class	4

- 7. Statistical analyses did not reveal a difference between daytime and night time catches although there were bimonthly variations.
- 8. A comparison of four beach seine stations (2, 3, 10, 11) fished during daylight hours in March, May and June during the three years of the study indicated that a change occurred during the post-operational phase; i.e., the general trend in 1975 and 1976 was for the CPUE to be low in March and then increase during May and July. In 1977 the catch was at its highest in March and decreased to the lowest value recorded in July.

FOOD UTILIZATION

- able information regarding feeding habits of fish in the lower Columbia River. The predator species designated for analysis were peamouth chub, coho salmon, chum salmon, chinook salmon, starry flounder, threespine stickleback, largescale sucker, prickly sculpin, and staghorn sculpin. The food utilization study of fish captured at the Miller Sands site yielded information indicating that the habitat development project did indeed provide a feeding area for indigenous nekton species. Important conclusions are:
 - Four main species of prey items made up 96 percent of the total number of items consumed by all fish at all stations.
 These are Daphnia longispina, Eurytemora hirundoides, Corophium salmonis, and chironomid larvae and pupae.

- 2. Distinct seasonal trends in feeding were observed that were applicable to most species examined. The peaks were:
 - a. July 1976 D. longispina and chironomid larvae
 - b. September 1976 D. longispina and N. mercedis
 - c. November 1976 E. hirundoides
 - d. March 1977 C. salmonis and chironomid pupae
 - e. May 1977 Chironomid pupae and E. hirundoides
 - f. July 1977 D. longispina and chironomid larvae
- 3. Size of the predator did not have a great effect on species composition of the prey. N. mercedis were consumed often by chinook salmon over 100 mm and staghorn sculpin over 75 mm.
- 4. Overlap between percentages of prey items consumed by selected fish species and percentages of invertebrates occurring in the benthic samples was limited.
- 5. Little difference was detected between day and night samples although more N. mercedis seemed to be recorded from night samples.
- 6. Few differences were noted between stations although the fishes' mobility makes this type of determination a problem.
- 7. *C. salmonis* and chironomid larvae were frequently found together within the stomaches. Some association may be occurring that would merit further study.
- Peamouth chub and largescale sucker did not seem to be feeding in the vicinity of Miller Sands.
- Juvenile chinook salmon made heavy use of the Miller Sands area for feeding March through July 1977.
- 178. The data base for this report was three years. Limiting factors for growth and survival of salmon and other species of fish are increasing in the Columbia River. As much information as possible on

the migration, growth, survival, and feeding behavior of indigenous fish species will be invaluable to decision-making processes now and in the future. Additional data would serve as a basis for comparing and strengthening conclusions derived from this study.

LITERATURE CITED

- Alabaster, Hal, 1978. The great rescue. NOAA Magazine 8 (1):48-51.
- Banner, Albert H. 1948. A taxonomic study of the Mysidacea and Euphausiacea (Crustacea) of the northeastern Pacific. Part II.

 Mysidellinae. Trans. Royal Canad. Inst. 27:56-125.
- Beak Consultants Inc. 1977. Appendix J: Zooplankton data, Columbia River. pp. J-1 to J-55 <u>In</u> operational ecological monitoring program for the Trojan Nuclear Plant. Volume 2: Appendices.

 Annual report for January December 1976 prepared for Portland Gen. Elect. Co. PGE-1009-76.
- Blahm Theodore H. 1975. Baseline biological inventory of the aquatic biota at the Miller Sands habitat. Interim report ot the Waterways Exper. Station, U.S. Corps Engr., Vicksburg, MI.
- Borgeson, David P. 1966. A rapid method for food habit studies, <u>In:</u>
 Calhoun, Alex (ed.). 1966. Inland fisheries management. State
 of California. The resources agency, Department of Fish and
 Game.
- Bradly, J. Chester. 1908. Notes on two amphipods of the genus

 *Corophium from the Pacific Coast. Univ. Calif. Pub. in Zool. 4(4):227-252.
- Brodskii, K.A. 1950. Calanoida of the far eastern seas and polar basin of the USSR, Moscow. Translated from Russian. 1967. Israel program for scientific translations. Jerusalem. 440 pp.
- Chu, H.F. 1949. The immature insects. Wm. C. Brown Company. Dubuque. 234 pp.

- Craddock, Donovan R., Theodore H. Blahm, and William D. Parente. 1976.

 Occurrence and utilization of zooplankton by juvenile chinook
 salmon in the lower Columbia River. Trans. Amer. Fish. Soc.

 105(1):72-76.
- Durkin, Joseph T., and R.J. McConnell. 1973. A list of fishes in the lower Columbia and Willamette Rivers. NMFS completion report to the Portland Dist. Corps Engr.
- Durkin, Joseph T., and Sandy J. Lipovsky. 1976. Baseline fish and shellfish investigations offshore of the Columbia River conducted from October 1974 through June 1975. Interim report to the Dredged Materials Research Program, Waterways Experiment Station U.S. Army Engineers, Vicksburg, MI. 48 pp. (Unpublished manuscript).
- Durkin, Joseph T., and Sandy J. Lipovsky, George R. Snyder, and Jack M. Shelton. 1977. Impact of agitation dredging at Chinook Channel. Section I. Changes in benthic estuarine fish and invertebrates from propeller agitation dredging. Final report to the Portland District Office, U.S. Army Corps of Engineers. 58 pp.
- Durkin, Joseph T., Sandy J. Lipovsky, George R. Snyder, and Merrit E.

 Tuttle. 1977. Environmental studies of three Columbia River
 estuarine beaches. Final report to the NMFS Columbia River Program
 Office. 67 pp.
- Jones, J.W. and H.B.N. Hynes. 1950. The age and growth of Gasterosteus aculeatus, Pygosteus pungitius, Pygosteus pungitius, and Spinachia vulgaris as shown by their otoliths. J. Anim. Ecol. 19:59-73.

- McConnell, Robert J. and Theodore H. Blahm. 1974. Occurrence of fish near the Kalama Nuclear Power Plant Site. (Oct. 1970 -Oct. 1973).

 Completion report to Clark and Cowlitz counties Pub. Util. Districts. 28 pp.
- Misitano, David A. 1974. Zooplankton, water temperature, and salinities in the Columbia River Estuary, December 1971 through December 1972.

 NMFS Data Report No. 92. Seattle. 31 pp.
- Mizuno, Toshihiko. 1975. Illustrations of the freshwater plankton of Japan. Hoikusha Publishing Co., Ltd. Osaka, Japan. 351 pp.
- Neal, Victor T. 1965. A calculation of flushing times and distribution for the Columbia River Estuary. Ph.D. thesis. School of Oceanogr.

 Oregon State University. 82 pp.
- Needham, James G., and Paul R. Needham. 1962. A guide to the study of fresh-water biology. Fifth edition. Holden-Day Inc. San Francisco 108 pp.
- Pennak, Robert W. 1953. Fresh-water invertebrates of the United States.

 Ronald Press Company. New York. 769 pp.
- Schleiper, Carl. 1972. Research methods in marine biology. Univ. Wash.

 Press. Seattle. 346 pp.
- Smirnov, N.N. 1971. Fauna of the U.S.S.R. Crustacea.

 Vol. 1, No. 2. Chydoridae. Leningrad. Translated from Russian.

 1975. Israel Program for Scientific Translations. Jerusalem.

 644 pp.

- Smith, Ralph I., and James T. Carlton (editors). 1975. Light's Manual:

 Intertidal invertebrates of the central California coast. Third

 edition. Univ. of Calif. Press Berkely. 716 pp.
- U. S. Environmental Protection Agency. 1974. Methods for Chemical Analysis of Water and Wastes. EPA-625-6-74-003.
- Usinger, Robert L. (editor). 1956. Aquatic insects of California.

 Univ. of Calif. Press. 508 pp.
- Van Slyke, D. D., and J. M. Neil. 1924. The determination of gas in blood and other solutions by vacuum extraction and manometric measurement. 1. Jour. Biol. Chem. 61(2): 523-574.
- Ward, Henry B., and George C. Whipple. 1918. Fresh-water biology.

 John Wiley and Sons, Inc. New York. 111 pp.
- Weber, Cornelius I. 1973. Biological Field and Laboratory Methods for Measuring the Quality of Surface Waters and Effluents.

 E.P.A. 670/4-73-001.

Table B1. Designated sampling sites at Miller Sands which were monitored for benthos, nekton, zooplankton, and water quality during I - Baseline Inventory, March 1975 - May 1976, and II - Post-Operational Study, July 1976 - July 1977.

	Ben	thos	Nek	ton	Water	Quality	Zooplankton
	I	II	I	II	I	II	I
1	_	x	_	-	-	x	_
2	×	x	x	x	x	x	-
3	x	x	x	×	x	x	_
4	-	x	-	~	-	-	-
5	~	x	_	x	-	-	x
6	x	x	-	x	x	x	-
7	-	x		-	-	-	_
8	-	х	_	-	-	-	
9	-	x	-	x	-	x 1/	•
10	x	x	x	x	x	x _	x
11	x	x	x	x	x	x	-
12	×	-	x	_	×	×	x
SI	x	-	-	-	x	-	x

Elevations Monitored at Marsh Development Site
July 1976 - July 1977

Transects	Benthos	Nekton (fyke)	Water Quality
А	1-2-3	1	1 1/
В	1-2-3	1	$1 \overline{1}$
С	1-2-3	1	1 1/
D	1-2-3	1	1 1/
E	1-2-3	1	1 <u>1</u> /

Elevations at sampling sites 1, 2, and 3 are .3, 1.2, and 1.8 meters respectively.

<u>J</u>/ Water quality stations were discontinued after the September 1976 survey.

Table B2. Variables, standard units and symbols, and methods used in monitoring and reporting water quality at the Miller Sands site, Columbia River, Oregon.

VARIABLE	UNITS S	SYMBOLS	METHOD
Temperature	Degrees	(°C)	Meter
рН	pH Units	-	Meter
Salinity	Parts/thousnad	(°100)	Meter
Conductivity	Micro M ho/CM at 25°C	(mho/cm)	Meter
Dissolved Oxygen	Milligrams/litre	(mg/l)	Meter
Alkalinity	Milligrams/litre CaCO ₃	(mg/1,CaCO ₃)	Chemical
Ammonia (NH-N/1)	Milligrams/Nitrogen/litr	re (mg N/l)	Meter
Turbidity $1/$	Formazin Turbidity	(FTU)	Nephelometric
Nitrogen Saturation	Millilitres Nitrogen/ litre	(ml N _{2/1)}	Van Slyke
Nitrogen Saturation	Percent Saturation	(0/0)	Van Slyke

 $[\]underline{1}/$ Formazin turbidity units (FTU) and Nephelometric turbidity units are interchangeable.

Table B3. List of zooplankton taxa and other genera of aquatic organisms found in nets during zooplankton surveys at Miller Sands, 1975 - 1976.

Cladocera

Bosmina
Daphnia
Chydorus
Ceriodaphnia
Monosphilus
Leydigia
Simocephalus
Alona
Macrothrix
Sida
Leptodora
Eurycerus

Copepoda

Cyclops
Eurytemora
Bryacamptus
Copepodites
Diaptomus

Other

Plecoptera
Diptera
Odonta
Thaleichthys (smelt larva)
Ostracoda
Eubranchips
Gammarus

Table B4. Summary of total catch per cubic metre of zooplankton and other related organisms by station and sampling period at Miller Sands, 1975 - 1976.

Station Numbers 1/

Date	_5_	11	12	Snag 	Total
March 1975	6.0	2.0	6.4	7.1	21.5
May	53.6	23.2	71.9	60.4	209.2
July	179.2	72.5	139.0	99.9	490.6
August	484.7	948.6	299.7	576.5	2309.5
September	1669.5	2115.5	1368.5	830.2	5983.7
November	21.7	17.2	10.6	16.5	66.0
January 1976	8.5	9.1	9.7	4.0	31.3
March	4.5	3.3	5.8	7.8	21.4
May	39.2	16.6	13.9	20.6	90.3
Totals	2466.9	3208.1	1975.5	1623.0	9223.5

^{1/} Stations 5 and 11 were in the cove, Station 12 was on the river side, and Snag Island was used as a remote reference area.

Table 85. Numbers of dominant zooplankton in cubic metres captured at all stations at Miller Sands, March 1975 to May 1976.

	March	May	July	August	September	November	January	March	May	Totals
Cladocera	2.5	117.3	427.4	1977.4	5202.8	47.1	8.5	8.4	54.6	7846.0
Bosmina	1.4	77.2	348.7	28.8	36.8	40.6	4.0	7.9	41.4	586.0
Daphnia	1.0	26.4	75.3	1943.4	5164.2	5.7	4.2	.5	12.6	7233.3
Alona	.1	13.7	3.4	5.2	1.8	.8	. 3	-	.6	25.9
Copepoda	14.0	30.5	37.6	277.7	763.8	18.5	19.4	9.9	29.7	1201.1
Cyclops	10.4	30.5	37.6	173.1	585.1	15.6	14.1	7.0	26.1	899.5
Eurytemora	3.6	-	-	104.6	178.7	2.9	5.3	2.9	3.6	301.6
Smelt Larva	3.1	5.5	-	-	-	-	.2	.3	. 3	9.4
Totals	19.6	153.3	465.0	2255.1	5966.6	65.1	28.1	18.6	84.8	9056.5

TABLE B6. A list of fishes captured during fifteen sampling periods at the Miller Sands study area, March 1975 to July 1977.

Common Name	Scientific Name	Number Captured
Chinook Salmon	Oncorhynchus tshawytscha	5789
Peamouth	Mylocheilus caurinus	3361
Starry Flounder	Platichthys stellatus	2502
Threespine Stickleback	Gasterosteus aculeatus	1164
Largescale Sucker	Catostomus macrocheilus	263
Staghorn Sculpin	Leptocottus armatus	218
American Shad	Alosa sapidissima	216
Prickly Sculpin	Cottus asper	125
Longfin Smelt	Spirinchus thaleichthys	120
Coho Salmon	Oncorhynchus kisutch	77
Chum Salmon	Oncorhynchus keta	51
Eulachon	Thaleichthys pacificus	50
Squawfish	Ptychocheilus oregonensis	32
Carp	Cyprinus carpio	30
Steelhead Trout	Salmo gairdneri	7
Surf Smelt	Hypomesus pretiosus	4
Cutthroat	Salmo clarki	2
Sockeye Salmon	Oncorhynchus nerka	2
Mountain Whitefish	Prosopium williamsoni	1
Pacific Lamprey	Entosphenus tridentatus	1
Sculpin	Cottus sp.	2

Monthly Catch and catch for Unit of Effort for the Four Major Fish Species Collected During Baseling. March 1975 - May 1976.

nook							Starry Flounder									
tion	12	2	3	10	11	Total	CPUE	12	2	3	10	11	Total	CPUE		
ch 75	6	8	5	5	5	29	15.8	7	-	1	7	2	17	3.4		
	162	108	87	49	59	465	93.0	-	2	16	15	6	39	7.8		
У	90	1	37	9	34	171	34.2	4	10	168	58	98	338	67.6		
ust	1	31	3	-	5	40	8.0	2	2	16	2	2	24	4.8		
tember	31	2	16	2	-	51	10.2	5	-	15	10	6	36	7.2		
enwer	1	2	-	-	-	3	0.6	1	-	1	2	-	4	0.8		
uary 76	-	-	2	1	3	6	1.2	5	1	2	1	4	13	2.6		
a h	3	19	14	74	27	137	27.4	-	_	19	-	1	20	4.0		
	2152	47	6	89	388	2682	536.4	5	-	2	10	2	19	3.8		
11	2446	218	170	- 229	521	3584	79.6	29	15	240	105	121	510	11.3		
H	271.8	24.2	18.9	25.4	57.9	79.6		3.2	1.7	26.7	11.7	13.4	11.3			
	stickleba	*****	_	•-					outh		• •					
ion	12	2	3	10	11	Total	CPUE	12	2	3	10	11	Total	CPUE		
h 75	1	1	-	2	3	7	1.4	-	-	-	-	-	-	-		
	-	43	5	1	4	53	10.6	-	27	-	-	-	27	5.4		
	13	-	1	2	4	20	4.0	4	-	7	-	2	13	2.5		
st	-	_	2	_	-	2	0.4	_	-	2	_	2	4	.8		
⇔mber			_													
+SIMD&E	16	-	_	-	-	16	3.2	-	28	6	3	3	39	7.8		
mber	16 2	2		- 8	-	16 12	3.2 2.4	-	28 -		3	3 2	39 2	7.8 .2		
			-		- - 3			-			3 - -					
mber	2	2	-	8		12	2.4	- - -			3 - -		2	. 2		
mber iry 76	2	2 1	-	8	3	12 8	2.4 1.6	- - -	-	6 - -	3 - - -	2 -	2	. 2		
mber iry 76	2	2 1 1	- - 7	8 3 -	3	12 8 10	2.4 1.6 2.0	- - - - 4	-	6 - 1	3 - - - - 3	2 - 1	2 - 2	.2		

									5 × 6	Alabarda, ili. es		. Tarre wilde.	h istoria e e e e e e	. e 117 e — pocest	de de conservo de la		
in B	Monthly seach Seine	Caton an s July	d Cato 1976 -	h Per July	Unit c 1977.	f Effo	rt of	the Fo	our Dom	inant	Fish S	Species	Colle	cted a	t Nigl	nt	
hi Sta																	
<u>.bi</u>	nook									St	arry F	lounde	<u>.</u>				
Sta	tion	2	3	5	9	10	11	Total	CPUE	2	3	5	9	10	11	Total	CI.,
/ ul	y 76	_	1	_	, -	_	77	78	13.0	11	78	_	67	81	111	348	56
4 Бер	tember	6	12	3	7	1	13	42	7.0	-	_	_	7	-	107	114	19
VOV	ember	_	4	-	1	3	4	12	2.0	4	107	1	1	-	102	215	35.
Mar	ch 77	42	44	18	44	145	44	337	56.2	5	8	5	3	-	3	24	4.
[∦] ∀ay	•	9	66	22	51	22	8	178	29.7	-	37	16	13	10	8	84	14.
Tu1	y	4	27	77	59	65	56	288	48.0	1	49	3	4	2	47	106	17
fot		61	154	120	162	236	202	935	25.9	21	279	25	95	93	378	891	24
'PU	E	10.2	26.7	20.0	27.0	39.3	33.7	25.9		3.5	46.5	4.2	15.8	15.5	63.0	24.8	
: <u>hr</u>	eespine St	icklebac	<u>k</u>							Pe	amouth	<u>1</u>					
i ta	tion	2	3	5	9	10	11	Total	CPUE	2	3	5	9	10	11	Total	Cbi
-u1	y 76	8	3	7	41	6	2	67	11.2	5	2	1442	73	6	3	1531	25 5.
200	tember	-	ì	6	1	-	22	30	5.0	35	220	122	86	12	26	501	83.
-	ember	5	38	3	_	1	9	56	9.3	2	2	2	2	2	9	19	3
Har	ch 77	10	12	11	15	4	1	53	8.8	1	1	-	-	-	-	2	
Hay	,	3	4	6	-	-	1	14	2.3	-	3	5	1	-	-	9	1
u1	y	1	3	11	11	-	1	24	4.5	-	31	3	-		30	64	10
3	al	27	61	44	68	6	36	247	6.9	43	259	1574	162	20	68	2126	59
ા ∵ot		- 1	0.	77		•		44/	0.7	73	~ > >						

 $_{
m b}$ le B9. Monthly Catch and Catch Per Unit of Effort of the Four Dominant Fish Species Collected During the $_{
m b}$ with Beach Seines July 1976 - July 1977.

Chinook	•								St	arry F	lounder	<u>-</u>				
Station	2	3	5	9	10	11	Total	CPUE	2	3	5	9	10	11	Total	CP:
July .76	-	1	-	-	-	1	2	0.3	26	368	1	28	26	60	509	84.
September	1	3	-	1	-	3	8	1.3	14	43	1	-	6	232	296	49.
November	2	-	2	3	1	2	10	1.7	2	9	-	1	9	18	39	6.
March 77	362	160	116	164	5	24	831	138.5	3	5 '	1	-	1	14	24	
May	70	39	102	42	37	24	314	52.3	-	22	-	1	5	4	32	5.
July	4	12	43	17	6	9	91	15.2	2	41	44	11	22	72	193	32.
Total	439	215	263	227	49	63	1256	34.9	47	488	47	41	69	400	1093	3 0.
ODITO	73.2	35.8	43.8	37.8	8.2	10.5	34.9		7.8	81.3	'7.8	6.8	11.5	66.7	30.4	
CPUE		.1.														
Threespine St		<u>:k</u>							<u>Pe</u>	amouth						
		<u>ek</u> 3	5	9	10	11	Total	CPUE	<u>Pe</u>	amouth	. 5	9	10	11	Total	CPI
Threespine St	ticklebac		5	9	10	11	Total		_			9	10	11		CP1 52.
Threespine St	ticklebac	3							2	3	5				313	
Threespine St Station July 76	ticklebac 2 1	3 156	3	6	5	1	172	28.6	30	3	5 260	16	-	5	313	52.
Threespine St Station July 76 September	ticklebac 2 1	3 156 352	3 1	6	5 -	1 26	172 381	28.6 63.5	30 92	3	5 260 8	16 12	- 6	5 10	313	52. 38.
Threespine St Station July 76 September November	ticklebac 2 1	3 156 352	3 1 3	6 - -	5 - -	1 26 1	172 381 6	28.6 63.5 1.0	30 92 -	3 2 42	5 260 8	16 12	- 6	5 10 -	313 170 1	52. 38. 0.
Threespine St Station July 76 September November March 77	2 1 2 1 -	3 156 352 1	3 1 3 18	6 - - -	5 - - 2	1 26 1 2	172 381 6 22	28.6 63.5 1.0 3.7	30 92 -	3 2 42 - 2	5 260 8 -	16 12 -	- 6 1	5 10 -	313 170 1 2	52. 38. 0. 0.
Threespine St Station July 76 September November March 77 May	2 1 2 1 - 24	3 156 352 1	3 1 3 18	6 - - -	5 - - 2 -	1 26 1 2	172 381 6 22 28	28.6 63.5 1.0 3.7 4.7	30 92 - - 7	3 2 42 - 2 38	5 260 8 - 127	16 12 - - 3	- 6 1 -	5 10 - -	313 170 1 2 165 13	52 38 0 0 27

The off and at the first of the four Dominant First species Collected at Wight cryke Metro Buly 1996 - Buly 1977.

hinook									Sta	rry Fl	ounder	-				
tation	A	В	С	D	E	6 ′	Total	CPUE	λ	В	С	D	E	6	Total	CPUE
uly 76	-	-	_	1	-	-	1	0.2	2	-	_	-	_	-	2	0 ,
·ept ember	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
⊙vember	-	-	-	-	-	-	-	-	1	-	-	-	-	-	1	0.2
arch 77	-	-	-	1	2	-	3	0.5	-	-	-	-	_	-	-	-
ay	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ııly .	-	-	-	3	-	-	3	0.5	-	-	-	-	1	-	1	0.2
otal	-	-	-	5	2	-	7	0.2	3	-	-	-	1	-	4	0.1
PUE	-	-	-	0.8	0.3	-	0.2		0.5	-	-	-	0.2	-	0.1	
reespine St	icklebac)	<u> </u>							Pea	mouth						
reespine Station	icklebac) A	<u>s</u> B	С	D	E	6 '	Total	CPUE	Pea A	amouth B	С	D	E	6	Total	CPUE
		-	C 4	D 8	E 10	6 '	Total 27	CPUE			C 4	D 6	E 3	6	Total	CPUE 2. 8
tation	A	В							A	В						
ation 11y 76 ptember	A	В -		8	10		27	4.5	A 2	В	4	6	3	1	17	2.8
ation ly 76 ptember	A	В -		8	10		27	4.5	A 2 -	B 1	4 10	6 22	3	1 -	17 53	2.8 8.8
ation 11y 76 ptember	A	В -	4 -	8	10		27 4 -	4.5	A 2 -	B 1	4 10	6 22 6	3	1 -	17 53	2.8 8.8 1.5
ation ily 76 ptember vember irch 77	A 5 - -	В -	4 -	8 2 -	10 2 	- -	27 4 - 1	4.5 0.7 - 0.2	A 2 -	B 1 - 2 -	4 10	6 22 6 1	3 21 - -	1	17 53 9 1	2.8 8.8 1.9 0.2
ation ily 76 ptember vember irch 77	5 - - - 2	B 1	4 - - 1 1	8 2 - - 3	10 2 - - 3	- - -	27 4 - 1 10	4.5 0.7 - 0.2 1.7	A 2 - 1 - 1	B 1 - 2 - 3	4 10 - - 1	6 22 6 1	3 21 - - 2	1	17 53 9 1 7	2.8 8.8 1.9 0.2 1.2

The state of the s

Fig. Monthly Catch and Catch Per Unit of Effort of the Four Dominant Fish Species Collected During - Day with Fyke Nets July 1976 - July 1977.

ninook									Sta	rry Fl	ounde	r -				
tation	A	В	С	D	E	6	Total	CPUE	Α	В	С	D	E	6	Total	CPUE
aly 76	_	-	-	_		-	-	-	2	-	-	-	-	-	2	0.3
eptember	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
vember	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
; arch 77	1	-	-	1	-	-	2	0.3	_	-	-	-	-	-	-	~
iy		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ıly	-	-	3	2	-	-	5	0.8	-	-	-	1	-	-	1	0.2
>t al	1	-	3	3	-	-	7	0.2	2	-	-	-	-	_	3	0.1
₽UE	0.2	-	0.5	0.5	-	-	0.2		0.3	-	_	-	-	-	0.1	
reespine St	icklebac	<u> </u>							Pea	mouth						
reespine St	ickleback A	<u>с</u> В	c	D	E	6	Total	СРІЈЕ	Pea A	amouth B	С	۵	E	6	Total	CPUE
		•	C 2	D 3	E 2	6	Total 9	СРІЛЕ 1.5			c 1	D	E 4	6	Total	CPUE
tation		•				6 -			A	В				6 1 2	27	
ation Aly 76 ptember rember		•				6 - -		1.5	A 6	В 6	1	9	4	1	27	4.5
tation		•			2 -	6	9	1.5	A 6 36	В 6	1 33	9 113	4	1	27 208	4.5 34.7
ation Aly 76 ptember rember		•		3	2 -	6	9 - 2	1.5	A 6 36	В 6	1 33	9 113	4	1	27 208	4.5 34.7
nly 76 ptember rember		B 1		3 - - 16	2 - 2 -	6 1	9 - 2 16	1.5 - 0.3 2.7	A 6 36 1	B 6 12	1 33 1	9 113 3	4 12 1	1	27 208 6	4.5 34.7 1.0
nation Aly 76 ptember vember rch 77	A 1 - - - 1	B 1 2		3 - - 16 1	2 - 2 - 2	6 1 1	9 - 2 16 7	1.5 0.3 2.7 1.2	A 6 36 1 - 2	B 6 12 -	1 33 1 -	9 113 3 - 1	4 12 1 - 3	1	27 208 6 - 19	4.5 34.7 1.6 - 3.2

Table Bl2 . Catch per Unit of Effort of the Four Dominant Fish Species Captured by Beach Seine During Day and Night at Miller Sands, March, 1975 to July 1977.

		Chinook	<u>-</u>		Starry lounder		<u>P</u>	eamouth	<u>.</u>	Sti	cklebac	<u>k</u>
	Day	Night	Total	Day	Night	Total	Day	Night	Total	Day	Night	Total
March 1975	15	_	15	3	-	3	_	_	-	1	_	1
May	93	-	93	8	-	8	5	-	5	11	-	11
July	34	-	34	67	-	67	3	-	3	4	-	4
August	8	_	8	5	-	5	1	-	1	1	_	_
September	10	-	10	7	-	7	8	-	8	3	-	3
November	1	-	1	1	-	1	-	-	-	2	-	2
January 1976	1	-	1	3	-	3	-	_	-	2	-	2
March	27	-	27	4	-	4	-	-	-	2	-	2
May	536	-	536	4	_	4	6		6	3	-	3
July	-	13	6	85	58	71*	52	255	157*	29	11	20
September	1	7	4	49	19	34	38	83	56*	64	5	34
November	2	2	2	7	35	21	-	3	2	1	9	5
March 1977	139	56	97	-	4	4	-	_	_	4	y	6
May	52	29	41	5	14	10	28	2	6	5	2	4
July	15	48	32	32	17	17	2	11	6	5	5	4

^{1/} Total CPUE was obtained by adding the numbers of fish captured at all stations during day and night and dividing by the number of times the nets were fished at all stations day and night.
* Peak CPUE

œ

B13. Age Class by Month of the Three Dominant Nekton Species Captured at Miller Sands During all :rveys March 1975 - July 1977.

	Age	<u> 1</u>	Age	e 2	Aye	e 3	Age	e 4	Age	e>4
eamouth	Number	Length	Number	Length	Number	Length	Number	Length	Number	Length
larch 75	_	_	_	-	_	_	_	_	_	
lay	10	91.8	_	_	_	_	_	_	_	_
uly	_	_	12	103.0	_	_	_	_	_	_
August	1	95.0	2	113.0	_	_	-	_	1	218.0
eptember	8	51.1	8	112.0	_	_	5	194.0	_	210.0
ovember	2	53.5	_	_	_	-	-		_	_
anuary 76	_	-	_	_	_	-	_	_	_	_
March	-	_	_	_	_	_		_	1	194.0
tay	8	70.0	_	-	_	-	_	_	_	_
uly	49	48.6	109	105.4	6	160.8	12	179.6	16	230.5
eptember	333	60.0	67	128.1	21	168.1	35	185.0	34	229.7
ovember	19	59.9	4	127.0	_	_	2	190.0	10	235.6
Carch 77	_	-	4	65.5	_	_	_	_	-	_
ау	_	-	40	81.9	2	106.0	6	136.8	51	203.8
uly	8	54.7	90	106.4	4	108.0	14	164.7	44	219.8
	Age	e l	P.q.	e 2	Άqe	e 3	ÞΑ	e 4	ρA	e>4
tarry Flounder	Number	Length	Number	Length	Number	Length	Number	Length	Number	Length
irch 75	14	69.6	3	116.0						
1701 75	75	71.0		139.0	-	-	-	-	-	_
ily	8 8	54.7	2 5	104.9	-	-	-	-	-	•
ig ust	18	57.2	5		-	-	-	-	_	-
·ptember	17	85.7	13	146.7	-	-	-	-	-	-
ve. nber	1	32.0	-	146.7	3	171.3	_	~	-	_
inuary 76	1	104.0	7	143.4	,	1/1.5	_	_	_	_
rch	î	100.0	8	152.0	_	_	_	_		
37	2	34.5	17	105.0	_	_	_	_	_	_
.ly	250	48.1	5	13.1	3	161.7	_	_	_	_
ptember					_	165.6	_	_	_	_
	72	53.0	_	_	a					
	72 95	53.9 61.2	- 25	150.7	9		-	-	_	_
vember	95	61.2	25	150.7	4	173.7	- 2	204.5	-	-
					-		- 2 5	204.5	-	- - -

813. (Continued

	Аg	е 1	AG	e 2	Age	2 3	Age	2 4	Aq	e/4
Linook	Number	Length								
darch 75	29	52.1	-	_	1	187.0	_	-	_	_
ay	50	78.9		_	_	-	-	_	_	_
uly	40	73.7	_	_	-	_	_	-	_	_
-ugust	5	54.2	14	107.0	-	-	-	-	_	_
eptember	_	-	24	132.5	_	_	-	-	_	_
⊘vember	3	104.3	_	_	_	-	_		_	_
anuary 76	5	51.8	1	165.0	_	-	_	_	_	_
'arch	41	63.1	2	142.0	_	-	-	_		_
ay	44	78.6	_	_	-	_	_	`-	-	_
ıly	29	106.4	-	_	_	_	-	-	-	_
eptember	50	123.7	_	_	_	_	_	-	-	_
ovember	21	130.2	1	189.0	-	_	_	_	_	
1rch 77	273	48.2	22	162.9	9	221.1	-	_	_	_
тy	271	98.2	18	136.6	_	-	_	_	_	-
ıly	189	102.7	33	120.6	_	_	_	_	_	~

١

 $^\circ$ Bl4. Site Comparison for Beach Seine Stations of Total Nekton Sampled During Each of the Fifteen ampling Periods.

		<u>19</u>	75			<u>19</u>	76		1977			
Station	March	May	July	Total	March	May	July	Total	March	May	July	Total
2	2	192	11	212	20	125	62	207	370	103	8	481
3	6	115	213	334	44	10	533	587	174	105	65	344
10	15	70	69	154	76	111	31	218	33	87	34	154
11	10	72	140	222	35	405	67	507	54	54	87	195
	40	449	433	922	175	651	693	1519	631	349	194	1174

TABLE B15 $\label{eq:average* Monthly Biomass (g/m² Wet Weight) at Seven Sampling Sites on Miller Sands, 1975-1976.$

				Station			
	12	λ	5	.3	10	11	SI
Month							
March 1975	2.9280	19.6020	5.8680	45.3860	33.9780	8.1920	14.9600
May 1975	3.3840	45.9640	68.1300	27.0720	17.7820	11.1800	12.1560
July 1975	1.0680	15.3700	16.7000	6.8888	18.5440	4.9900	1.3540
August 1975	1.1320	4.2980	50.1600	4.2020	3.3220	2.4640	.3540
September 1975	30.2960	13.9120	15.4300	12.1960	3.6140	5 5300	3.0560
November 1975	19.4700	22.5420	13.2440	9.3940	10.1160	1.8440	22.1000
January 1976	6.5120	8.8888	77.6940	15.2120	12.1000	61.2740	.8720
March 1976	2.2520	20.5040	52.4060	29.9140	14 3060	50.8900	1.8940
May 1976	1.5640	.5100	71.9580	15.4740	48.3460	9.1000	39.3720
Total Yearly Biomass							
g/m ²	68.6060	151.5908	371.5900	165.7388	162.3080	155.4640	96.1180

^{*}Average of Six Grabs

Macroinvertebrate Taxa in Order of Mean Annual Abundance From Seven Stations at Miller Sands, Oregon, 1975-1976

TABLE B16

<u>Taxa</u>	No/m^2	Wet Wt./m ²
Oligochaeta	3030.50	2.7500
Corophium	2005.50	2.2142
Nematoda	181.95	.0230
Chironomidae	153.70	.4563
Corbicula	87.10	2.6085
Fish eggs	45.70	.0139
Polychaeta	10.60	.ú444
Gastropoda	10.00	.6430
Neomysis	5.05	.0064
Anisogammarus	1.95	.0061
Insect Larvae	.95	.0221
Platyhelmenthes	.15	.0006
Eohaustorius	.15	.0005
Lamprey	.05	.0410
Adonata	.03	-

Table B17

Macroinvertebrate Taxa in Order of Mean Annual Abundance from 27 Stations at Miller Sands, Oregon

July 1976 - July 1977

	Avg. No. M ²	Avg. Wt. M ²
Corophium	942.4	.1838
Oligochaete	731.6	.3103
Chironomidae	251.5	.1038
Corbicula	128.0	5.6596
Insect Larva	15.2	.0124
Gastropoda	14.2	.3932
Polychaete	10.9	.0039
<pre>Cladocera</pre>	4.7	.0000
Ostracod	3.6	.0000
Neomysis	1.5	.0015
Anisogammarus	1.2	.0005

Table B18

Mean Annual Macroinvertebrates per .05m² Grab at 15 Intertidal and 11 Subtidal (Cove) Stations at Miller Sands, Oregon.

July 1976 - July 1977

		INTERTIDAL		SUBTIDAL
	Elevation 0.3m	Elevat 1.2m	Elevat 1	Cove
	▼ ± SE <u>1</u> /	× ± se <u>1</u> /	x ±	× ± SE <u>2</u> /
Corophium				
Avg. No.	125.6 ± 22.2625	16.8 ± 3.2672	4.0 ± 2.1974	601.6 ± 72.187.
Avg. Wt.	.0242 ± .0042	.0074 ± .0042	.0010 ± .0009	.1154 ± .012F
Oligochaete				
Avg. No.	169.1 ± 37.2241	€0.6 ± 1.6624	41.6 ± 4.3311	395.3 ± 44.2475
Avg. "t.	.7479 ± .0100	.0944 ± .0159	.0188 ± .0036	.1467 ± .0188
Chironomidae				
Avg. No.	192.2 ± 38.7703	9.4 ± .8739	$1.2 \pm .1532$	86.1 ± 6.9140
Avg. Wt	.0971 ± .0180	.0025 ± .0003	.0001 ± .0000	.0281 ± .0049
Corbicula				
Avg. No.	33.9 ± 6.9340	10.3 ± 1.9057	2.6 ± .4062	69.4 ± 9.3421
Avg. Wt.	3.3867 ± 1.3929	.4451 ± .1215	.0069 ± .0026	2.2683 ± .6237
Insect Larvae				
Avg. No.	4.9 ± .1532	11.6 ± .8717	$3.4 \pm .1425$	1.6 ± .349°
Avg. Wt.	.0011 ± .0000	.0149 ± .0030	.0022 ± .0009	.0004 ± .0000
Gastropoda				
Avg. No.	.7 ± .1532	12.8 ± 3.0750	$1.0 \pm .3304$	3.4 ± .0441
Avg. Wt.	.0071 ± .0039	.0150 ± .0048	.0010 ± .0048	.2682 ± .061.

Mean of 90 Samples
Mean of 198 Samples

Table B19

Average Biomass and Percent Total of Important Macroinvertebrates Per Square Metre by Elevation.

Mollusca (Corbicula) have been excluded due to the large weight discrepancy introduced by the shell.

	0.3m Elevation	1.2m Elevation	l.8m Elevation	Cove
Corophium	.4840	.1480	. 0200	2.3080
	(13.4 %)	(6.2 %)	(4.5 %)	(39.7 %)
Oligochaete	.9580	1.8880	.3760	2.9340
	(26.6 %)	(79.3 %)	(85.4 %)	(50.5 %)
Chironomidae	1.942	.0500	.0002	.5620
	(53.9 %)	(1.9 %)	(.0 %)	(9.7 %)
Insect Larvae	.2200	. 2980	.0440	.0000
	(6.1 %)	(12.6 %)	(10.1 %)	(.1 %)
Total Average Annual Dry Weight by Elevation g/m ²	3.604	2.3840	.4402	5.8120

Table B20. Mean Annual Sediment Size and Percent Volatile Solids in Sediments Associated with Macroinvertebrates at Miller Sands.

SEDIMENT PARTICLE SIZE	ELEVATION MEAN S.E >4.75 mm	Ε.	ELEVAT I MEAN	ON 2 S.E.	ELEVAT MEAN	ION 3 S.E.	COV MEAN	E S.E.
A B C D E COVE MEAN	0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0	00 00 00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.08 0.00 0.00 0.00	0.00 0.04 0.00 0.00 0.00	0.00	0.00
SEDIMENT PARTICLE SIZE	2.38 - 4.7	74 mm	n					
TRANSECT A B C D E COVE MEAN	0.14 0.0 1.26 0.2 0.00 0.0 0.07 0.0 0.00 0.0	29 00 02	0.00 0.33 0.21 0.02 0.01	0.00 0.09 0.08 0.01 0.01	0.08 0.52 0.24 0.14 0.18	0.02 0.12 0.06 0.04 0.14	0.04	0.01
SEDIMENT PARTICLE SIZE TRANSECT	E 1.19 - 2.3	37 mm	n					
A B C D E COVE MEAN	0.20 0.0 1.35 0.2 0.17 0.0 0.60 0.0 0.18 0.0	26 06 05	0.13 0.69 0.74 0.30 0.48	0.03 0.14 0.05 0.06 0.21	0.70 1.41 0.93 0.83 0.17	0.05 0.11 0.11 0.07 0.07	0.30	0.06
SEDIMENT PARTICLE SIZE	E 0.42 - 1.	18 mr	n				0.50	0.00
TRANSECT A B C D E COVE MEAN		37 22 41 71	10.83 14.44 13.39 13.80	1.06 0.39	16.35 22.27 15.92 16.42 5.70	0.47 1.14 0.97 1.12 0.53	5.07	0.57
SEDIMENT PARTICLE SIZ	E 0.149 - 0	.41 r	mm					
A B C D	81.90 0.	20 44 67	83.76 77.63 81.24 83.88		80.93 73.64 78.70 80.13	0.65 0.94 0.94 1.08		
E COVE MEAN	53.80 1.	рÞ	63.70	1.87	87.82	2.33	50.76	1.99

	ELEVATION S	ON 1 S.E.	ELEVAT MEAN	ION 2 S.E.	ELEVAT MEAN	ION 3 S.E.	COVE MEAN	S.E.
SEDIMENT PARTICLE S TRANSECT	IZE 0.074	- 0.14	8 mm					
A B C D E COVE MEAN	2.70 18.88 31.57 3.17 24.75	0.24 1.80 2.40 0.20 0.74	2.02 4.51 2.94 1.64 25.39	0.12	1.31 1.94 3.13 1.93 4.44	0.11 0.19 0.12 0.21 1.32	30.25	1.67
SEDIMENT PARTICLE S TRANSECT	IZE 0.044	- 0.07	3 mm					
A B C D E COVE MEAN	2.23 4.53 8.27 0.38 8.13	0.44 0.83	0.92 1.02 0.78 0.12 3.73		0.13 0.33 0.48 0.21 0.83	0.01 0.04 0.04 0.05 0.64	7.56	0.53
SEDIMENT PARTICLE S TRANSECT	SIZE <0.0	44 mm						
A B C D E	4.73 7.69 9.14 0.75 11.95	0.40 0.86 1.21 0.09 0.59	2.30 1.34 0.60 0.20 5.01	0.45 0.18 0.05 0.02 1.02	0.11 0.27 0.56 0.25 0.82	0.01 0.04 0.04 0.05 0.50		
COVE MEAN						ΤΩΤΛΙ	6.06 100.0 P	0.47
NEXT 3 BLOCKS ARE A	FURTHER B	REAKDO	WN OF TH	HE PERCE	ENTS OF			
SEDIMENT PARTICLE S TRANSECT	SIZE 25 - 4	4 micr	ons					
A B C D E COVE MEAN	2.17 3.32 4.72 0.12 4.83	0.26 0.44 0.66 0.06 0.59	1.15 0.55 0.00 0.00 2.15	0.20 0.14 0.00 0.00 0.41	0.00 0.00 0.01 0.02 0.10	0.00 0.00 0.01 0.01 0.09	2.85	0.24
SEDIMENT PARTICLE S TRANSECT	SIZE 10 - 2	5 micr	ons					
A B C D	1.54 2.50 2.74 0.09	0.13 0.31 0.36 0.03	0.78 0.32 0.00 0.00	0.17 0.07 0.00 0.00	0.00 0.00 0.02 0.02 0.16	0.00 0.00 0.01 0.01 0.16		
E COVE MEAN	4.06	0.24	1.39	0.26	0.10	0.10	1.72	0.15

	ELEVAT	CION 1	ELEVA!	TION 2	ELEVAT	CION 3	COV	/E
	MEAN	S.E.	MEAN	S.E.	MEAN	S.E.	MEAN	S.E.
SEDIMENT PARTICLE SIZ	E 5 - 10) micror	ıs					
Α	1.00	0.15	0.36	0.08	0.00	0.00		
В	1.93	0.42	0.17	0.03	0.01	0.00		
С	1.67	0.28	0.02	0.01	0.05	0.03		
D	0.08	0.03	0.01	0.01	0.07	0.04		
Ε	3.05	0.57	1.46	0.57	0.27	0.26		
COVE MEAN							1.24	0.17
VOLATILE SOLIDS TRANSECT								
A	1.37	0.11	1.04	0.08	0.85	0.03		
В	3.31	0.52	1.22	0.08	0.90	0.04		
Č	2.13	0.17	0.85	0.04	1.12	0.12		
D	0.89	0.05	0.81	0.04	0.92	0.02		
Ē	2.57	0.12	2.07	0.20	1.50	0.19		
COVE MEAN							2.27	0.07

TABLE B21

Species List of Items Consumed at Miller Sands July 1976 Through July 1977

Nematodes

Oligochaetes

Cladocerans

Daphnia longispina Bosmina longisrostris Eurycercus sp. Digested cladocerans

Copepods

Eurytemora hirundoides Diaptomus sp. Digested copepods

Mysids

Neomysis mercedis Digested mysids

Amphipods

Corophium salmonis Anisogammarus confervicolus

Pelecypods

Corbicula fluminea

Gastropods

Pleurocera. sp. Unid. gastropods

Ostracods

Unid. ostracods

Insects

Chironomid larvae Chironomid pupae Diptera Digested diptera Coleoptera Odonata nymph (dragonfly) Odonata (damselfly)

Hemiptera Hemiptera--Corixidae Hymenoptera Hymenoptera--Formicidae

Ephemeroptera Unid. insects

Teleosts

Thaleichthys pacificus larvae Platichthys stellatus juvenile Oncorhynchus tshavytscha juv. Gasterosteus aculeatus eggs.

Unid. fish eggs Unid. fish scales Unid. fish bones Unid. fish

Other

Arachnids

Gnorimosphaeroma oregonensis

Gravel and sand

Sticks Synthethic fiber Vegetation seeds Unid. vegetation Digested material

Table B22
FOOD CONSUMED BY NEKTON AT MILLER SANDS IN ORDER OF DECREASING TOTAL NUMBER JULY 1976 THRU JULY 1977.

Food Item	Total Number	Percent
Daphnia longispina 1/ Eurytemora hirundoides Corophium salmonis Chironomid pupae Chironomid larvae Neomysis mercedis Diptera	22,218 18,555 4,185 3,902 3,282 674 501	41 34 8 7 6 1
Diaptomus sp. Unid. insects Thaleichthys pacificus larvae Oligochaetes Anisogammarus confervicolus Ostracods Gasterosteus aculeatus eggs Eurycercus sp. Hymenoptera Vegetation seeds	466 106 98\ 83 46 37 34 30 26 26	1
Coleoptera Hemiptera Sticks Unid. fish Arachnid Ephemeroptera HemipteraCorixidae Odonata nymph Nematode Corbicula fluminea Pleurocera sp. Unid. gastropods Platichthys stellatus juveniles	11 8 8 6 7 6 6 5 4 4 3 2 2 2	Combined Total 1 Percent
Unid. fish scales Bosmina longirostris Odonata Tipulidae Unid. fish bones Gnorimosphaeroma oregonensis TOTAL	54,342	100 %

1/ Fewer than 5% cladocerans other than \underline{D} . longispina

Than had to the thing of the Form 12 algebra of the property appeals and in the bentaic environment.

	Nekton Species							
ood category	Peamouth Chub	Chinook Salmon	Starry Flounder	3-spine Stickleback	Largescale Sucker	Staghor: Sculpin		
iematode .								
Stomach		30				2.5		
Benthos								
ligochaetes								
Stomach		12.5	50	50				
Benthos	38	38	38	38	38	5.5		
olychaete								
Stomach								
Benthos	• 5	• 5	• 5	• 5	• 5	. 5		
eanthes sp.								
Stomach	~-							
Benthos 2/	• 5	. 5	• 5	.5	. 5	• 5		
aphnia longispina2/								
Stomach	,	50	50	. 50				
Benthos	0.6	0.6	0.6	0.6	0.6	0.6		
arycercus sp.								
Stomach				22				
Benthos								
rytemora hirundoides								
Stomach				50		46		
Benthos					~-			
·omysis mercedis								
Stomach		49.5	16.5			50		
Benthos	0.1	0.1	0.1	0.1	0.1	0.1		
rophium salmonis								
Stomach		50	50	50	7-	50		
Benthos	43	43	43	43	43	143		
isogammarus confervicolus			,			–		
Stomach		20	14	13		14.5		
Benthos	.05	.05	.05	.05	.05	.05		
rbicula fluminea								
Stomach			50					
senthos	5	5	5	5	5	5		

number is the mid-range estimated number; for example, if the range is 25-50 percent, the mid-range value is 37.5 percent.

^{15%} D. longispina--time did not permit one-by-one identification

was in Anglia THE BEATHIS SAVINGAMENT.

	Hekton Species							
	Peamouth	Chinook	Starry	3-spine	Largescale			
ood Category	Chub	Salmon	Flounder	Stickleback	Sucker	Sculpin		
estropoda								
Stomach						1.5		
Benthos	.9	.9	•9	• 9	• 9	• 9		
tracod								
Stomach				26.5				
Benthos	. 3	. 3	• 3	• 3	. 3	• 3		
ironomids (larvae & pupae)								
Stomech		50	50	48.5		50		
Benthos	23	23	23	23	23	23		
ptera								
Stomach		48						
Benthos	.67	.67	.67	•€	.67	.67		
llembula								
Stomach								
Benthos	.02	.02	.02	•08	.02	.02		
leoptera								
Stomach		5						
Benthos								
onata adult								
Stomach		0,5						
Benthos								
onata nymph								
Stomach		10	50			2.5		
Benthos								
menoptera								
Stomach		38.5						
Benthos								
miptera								
itomach		2.5						
denthos								
hemeroptera								
Stomach		33.5						
Benthos								

number is the mid-range estimated number; for example, if the range is 25-50 percent, the mid-range value is 37.5 percent.
95% D. longispina--time did not permit one-by-one identification

TO A MARK OF THE AUTHORITANT OF EACH RESIDENCE. OF IMPORTANT OF SENTER ENVIRONMENT.

	Nekton_Species							
ood Category	Peamouth Chub	Chinook Salmon	Starry Flounder	3-spine Stickleback	Largescale Sucker	Staghorn Sculpin		
ipulidae larvae								
Stomach		0.5	~-	~ ~				
Benthos								
abanidae								
Stomach	,	,	,	,	,	,		
Benthos	. 4	. 4	. 4	. 4	, l;	• 14		
orixidae								
Stomach		2.5						
Benthos	.01	.01	. 0	.01	.01	.01		
ncorhynchus tsawytscha								
Stomach	'		~-	· 		50		
Benthos								
latichthys stellatus								
Stomach								
Benthos								
nidentified fish								
Stomach		0.5						
Benthos								
ish bones								
Stomach		25						
Benthos								
lickleback eggs								
Stomach				9.5				
Benthos								
:lachon larvae								
Stomach		16						
denthos								
machnid								
Stomach		2.5						

number is the mid-range estimated number; for example, if the range is 25-50 vercent, the mid-range value is 37.5 percent.

^{25%} D. longispina--time did not permit one-by-one identification

APPENDIX B1: ZOOPIANKTON PER CUBIC METRE COLLECTED AT MILLER SANDS AND SNAG ISLAND, MARCH 1975-MAY 1976

Appendix Table Bl

Zooplankton Per Cubic Metre Collected at Miller Sands and Snag Island

March 1975

		Cove	River	Snag Island
	5	1.1	12	SI
Temperature (°C)	6.3	6.7	6.0	6.7
Cubic Metre	31.9	42.9	20.8	6.9
Cladocera				
Bosmina	. 3	.1	. 4	.6
Daphnia	. 3	.1	.3	.3
Chydorus	-	-	.3	-
Ceriodaphnia	-	-	.2	_
Monosphilus	.1	_	.1	-
Leydigia	_	-	.1	-
Simocephalus	-	.1	-	-
Alona	-	.1	-	-
Copepoda				•
Cyclops	2.5	.8	3.2	3.9
Eurytemora	1.4	.4	.9	.9
Bryocamptus	. 2	-	.1	.1
Others				
Plecoptera	.2	_	.1	_
Diptera	.2	_	-	_
Odonta	.1	_		-
Smelt Larva	.7	. 4	.7	1.3
Total/m ³	6.0	2.0	6.4	7.1
		May 1975		
Temperature (°C)	13.0	12.6	12.2	12.0
Cubic Metre	14.2	48.9	55.8	23.2
Cladocera				
Bosmina	31.4	2.1	25.9	17.8
Daphnia	2.7	.9	13.0	9.8
Alona	8.1	2.3	1.4	1.9
Chydorus	. 2	.5	. 2	. 2
Ceriodaphnia	1.1	-	.6	-
Macrothrix	.1	***	_	-
Copepoda				
Copepodites	3.9	9.1	13.2	12.6
Cyclops	2.5	4.7	11.1	12.2
Diaptomus	2.4	2.4	5.1	3.2
Bryocamptus	-	.3	. 3	. 3

May 1975 (Cont.)

	5	Cove	River 12	Snag Island
	9	11	12	SI
Others				
Ostracoda	.1	-	_	-
Diptera	-	.1	-	_
Smelt Larva	1.1	.9	1.1	2.4
Total/m ³	53.6	23.3	71.9	60.4
		July 1975		
Temperature (°C)	17.1	14.8	15.0	15.0
Cubic Metre	58.9	73.5	60.8	27.6
Cladocera				
Bosmina	143.8	44.2	96.1	64.6
Daphnia	19.2	17.4	15.4	23.3
Alona	1.6	.7	. 4	.7
Ceriodaphnia	.6	. 4	. 2	.3
Sida '	. 4	.1	.1	.1
Leptodora	-	-	. 2	. 4
Eurycercus	-	. 2	-	-
Chydorus	. 3	-	-	-
Copepoda				
Cyclops	10.7	4.6	16.8	5.5
Diaptomus	1.9	2.2	2.6	2.4
Copepodites	-	2.3	6.6	2.5
Bryocamptus	.7	. 4	.5	.1
Others			_	
. Ostracoda	_	_	.1	-
Total/m ³	179.2	72.5	139.0	99.9
		August 1975		
Temperature (°C)	19.6	20.0	19.8	19.5
Cubic Metre	26.8	27.5	71.5	30.4
Cladocera				
Bosmina	4.3	9.5	6.1	8.9
Daphnia	426.1	852.5	180.6	484.2
Sida	1.9	3.1	5.8	4.2
Leptodora	.9	1.4	1.8	1.0
Alona	3.1	1.2	.9	_
Ceriodaphnia	5.6	9.2	1.9	3.1
Simocephalus	.6	_	_	.5
Chydorus	-	.5	-	-

August 1975 (Cont.)

	-	Cove	River	Snag Island
	5	11	12	SI
Copepoda				
Cyclops	22.4	45.6	64.8	40.3
Eurytemora	18.9	25.3	35.6	24.8
Bryocamptus	.9	.3	.9	.3
Others	• •	• 3	. ,	• 2
Eubranchipus	-	-	1.3	. 2
Total/m ³	484.7	948.6	299.7	576.5
		September 19	75	
Manual (0.0)	10.0	10.0	10.4	10.0
Temperature (°C)	18.0	19.2	18.4	18.9
Cubic Metre	59.3	41.3	52.3	21.7
Cladocera				
Bosmina	6.1	10.0	11.8	0 0
Dahpnia	1464.1	1933.2	1079.7	8.9 687.2
Ceriodaphnia	1464.1	1933.2	2.8	687.2
Sida	2.0	_	6.7	2.9
Chydorus	2.0	-	.4	2.9
Alona	1.4	_	.4	_
Copepoda	1.4		• 4	_
Cyclops	139.3	131.1	210.0	104.7
Eurytemora	56.6	41.2	54.4	26.5
Bryocamptus	-	41.2	2.7	20.3
227 - Oup 2 2 3			2.,	
Total/m ³	1669.5	2115.5	1368.5	830.2
		November 197	5	
Temperature (°C)	8.5	6.6	8.2	7.6
Cubic Metre	94.3	72.4	50.3	37.3
cubic metre	54.5	72.4	50.5	37.3
Cladocera				
Bosmina	15.5	8.8	5.6	10.7
Daphnia	1.1	1.1	2.4	1.1
Alona	_	.1	.5	. 2
Sida	_	-	-	. 2
Copdpoda				
Cyclops	4.1	6.4	1.6	3.5
Eurytemora	1.0	.8	.3	.8
Others				
Odonta	_	_	. 2	-
2				
Total/m ³	21.7	17.2	10.6	16.5

January 1976

		Cove	River	Snag Island
	5	11	12	SI
Temperature (°C)	5.1	5.1	5.2	5.8
Cubic Metre	54.8	59.1	55.5	82.5
Cladocera				
Bosmina	1.2	.9	1.4	.5
Daېhnia	1.9	.8	1.3	.2
Ceriodaphnia	. 5	.1	. 3	.1
Alona	.1	.1	.1	_
Chydorus		T	.1	T
Copepoda				
Copepodid	. 3	.3	. 4	.1
Cyclops	2.9	4.7	5.5	1.0
Eurytemora	1.3	1.8	.5	1.7
Dioptemus	. 2	.3	.1	. 4
Others				
Gammarus	-	_	-	${f T}$
Plecoptera	_	-	-	T
Smelt Larva	.1	.1	-	T
Total/m ³	8.5	9.1	9.7	4.0
		March 1976		
Temperature (°C)	6.7	7.0	6.8	7.2
Cubic Metre	63.6	67.1	63.4	66.7
Cladocera				
Bosmia	. 7	1.0	3.5	2.7
Daphnia	.1	.1	.1	. 2
Ceriodaphnia	.1	.1	-	.1
Chydorus	.1	.1	.1	. 2
Alona	_	Т	T	T
Sida	-	-	T	_
Copepoda				
Copepodid	. 1	.1	.1	.1
Cyclops	2.3	1.5	.14	3.1
Eurytemora	.9	.3	.5	1.2
Dioptemus	.1	.1	T	.1
Others				
Smelt Larva	.1	Т	.1	. 1.
Total/m ³	4.5	3.3	5.₽	7.8

May 1976

والمعادية والمدورين

	C	ove	River	Snag Island
	5	11	12	SI
Temperature (°C)	12.6	13.0	13.2	13.2
Cubic Metre	62.6	59.4	59.5	60.6
Cladocera				
Bosmina	16.4	10.9	5.7	8.4
Daphnia	4.7	1.9	2.1	3.9
Chydorus	.5	.7	. 4	.6
Alona	.2	.2	.1	.1
Ceriodaphnia	.9	.5	.1	.3
Leptodora	T	_	-	-
Copepoda				
Copepodid	.1	.1	.1	-
Cyclops	14.9	2.1	4.2	4.9
Eurytemora	1.1	. 2	.9	1.4
Diaptomus	. 4	T	.3	.7
Others				
Smelt Larva	T	-	T	.3
Total/m ³	39.2	16.6	13.9	20.6

APPENDIX B2: WATER QUALITY AT MILLER SANDS AND SNAG ISLAND, MARCH 1975-MAY 1976

.30

11.7

.04

9.1

.08

8.8

.07

11.1

.09

12.5

.11

12.6

.08

11.1

122

Day Flood

Day Flood

Dissolved Oxygen (mgl)

.45

12.7

.40

11.1

	Mar 75	May 75	July 75	Aug 75	Sept 75	Nov 75	Jan 76	Mar 76	May 76
Station 3 (cont.) Turbidity (FTU) Day Flood	15.0	23.0	22.0	8.2	7.4	3.3	3.2	12.0	10.5
Nitrogent Saturation (% Day Flood	·)	119.8	100.6			5.5	106.6	12.0	10.3
Station 5 Temperature (°C)									
Day Flood	6.2	12.9	17.0	19.6	17.2	8.3	5.1	6.7	12.4
рн Day Flood	8.1	8.3	8.2	7.2	7.2	7.1	7.0	7.3	6.8
Salinity (0/00) Day Flood	.40	.30	.30	.06	.12	.07	.08	.05	.10
Dissolved Oxygen (mgl) Day Flood	12.6	10.7	10.7	9.1	8.6	10.7	12.2	12.4	10.9
Turbidity (FTU) Day Flood	15.0	23.0	12.0	9.7	5.3	2.8	2.6	14.0	13.0
Nitrogen Saturation (%) Day Flood	110.9				98.3			113.3	
Station 10 Temperature (°C)									
Day Plood	6.4	13.7	14.6	19.7	18.3	7.5	5.6	7.9	12.9

					~				
	Mar 75	May 75	July 75	Aug 75	Sept 75	Nov 75	Jan 76	Mar 76	May 76
Station 10 (cont.)									
Day Flood	6.0	8.3	7.9	7.6	7.4	6.8	6.9	7.4	7.3
Salinity (0/00) Day Flood	.30	.30	.30	.04	.12	.07	.10	.17	.12
Dissolved Oxygen (mgl) Day Flood	12.5	11.1	10.3	9.0	8.7	11.1	11.8	12.4	11.3
Turbidity (FTU) Day Flood	15.0	23.0	22.0	8.0	11.0	2.7	3.2	11.0	10.0
Station 11									
Temperature (°C) Day Flood	6.7	14.6	14.6	20.4	19.2	6.3	5.1	7.0	15.0
pH Day Flood	8.1	8.0	8.0	7.4	6.8	6.8	7.2	7.4	7.4
Salinity (0/00) Day Flood	.35	.30	.30	.05	.07	.13	.14	.12	.12
Dissolved Oxygen (mgl) Day Flood	12.5	10.8	10.8	9.4	9.0	11.4	12.3	13.0	11.5
Turbidity (FTU) Day Flood	15.0	18.0	18.0	7.0	5.3	12.0	3.3	10.0	9.0
Nitrogen Saturation (%) Day Flood									117.7

	Mar 75	May 75	July 75	Aug 75	Sept 75	No v 75	Jan 76	Mar 76	May 76
Station 12 Temperature (°C)									
Day Flood	6.0	12.2	14.7	19.8	18.4	7.8	5.6	6.8	12.8
рН									
Day Flood	7.9	8.2	8.2	7.6	6.6	7.2	7.1	7.5	7.5
Salinity (0/00)									
Day Flood	.40	.40	.40	.07	.10	.07	.12	1.14	.10
Dissolved Oxygen (mgl)									
Day Flodo	12.3	11.3	11.2	9.2	8.9	11.0	12.4	12.8	
Turbidity (FTU)									
Day Flood	15.0	28.0	19.0	5.8	5.5	7.0	4.0	14.0	8.0
Nitrogen Saturation (%)									
Day Flood	112.3	115.0	100.6	101.0	97.8	102.3		108.9	121.0
Station Snag Island									
Temperature (°C) Day Flood	6.6	12.5	14.8	19.5	18.4	7.7	5.8	7.2	13.2
рH									
Day Flood	7.8	8.3	8.1	7.4	7.2	6.8	7.0	7.4	7.8
Salinity (0/00)									
Day Flood	.35	.20	.30	.10	.05	.12	.11	.1.8	.03

Appendix B2 (Concluded)

and the first consequence of the second seco

	Mar 75	May 75	July 75	Aug 75	Sept 75	Nov 75	Jan 76	Mar 76	May 76
Station Snag Island Dissolved Oxygen (mgl) Day Flood	12.9	11.5	10.9	9.9	8.5	10.9	12.6	12.8	12.4
Turbidity (FTU) Day Flood	20.0	14.0	20.0	7.6	4.9	5.0	3.2	13.0	8.0
Nitrogen Saturation (%) Day Flood		114.7	109.5	101.2			104.7	112.4	118.2

APPENDIX B3: WATER QUALITY AT MILLER SANDS, JULY 1976 - JULY 1977

Appendix Table B3

Table 31. Water Quality at Miller Sands (Appendix)

Date July Sept Nov March May July 76 76 76 77 77 77 Station 1 Temperature (°C) Day Flood 21.5 18.0 11.4 8.5 12.7 17.1 Day Ebb 11.3 8.6 12.9 17.1 Night Flood 21.9 17.9 11.8 7.9 12.6 18.3 Night Ebb 11.6 6.7 12.5 18.1 Day Flood 7.8 7.9 7.3 7.9 8.5 7.2 Day Ebb 7.1 8.0 8.5 7.4 Night Flood 6.9 7.7 7.5 7.4 8.9 8.0 Night Ebb 7.5 7.8 8.6 7.4 Salinity (0/00) .42 Day Flood .09 .10 .08 .10 .10 Day Ebb .14 .11 .10 .42 Night Flood .05 .10 .08 .12 .14 .18 Night Ebb .04 .11 .11 .48 Dissolved Oxygen (mgl) Day Flood 13.1 9.8 8.9 10.3 11.8 8.0 Day Ebb 10.6 13.0 11.5 8.0 Night Flood 9.6 12.3 9.0 10.2 10.6 8.6 Night Ebb 10.1 13.2 10.3 8.1 Turbidity (FTU) Day Flood 7.2 6.5 2.5 4.6 5.2 4.3 Day Ebb 3.0 5.2 6.0 4.6 Night Flood 9.3 10.0 2.1 4.6 6.3 5.8 Night Ebb 2.0 4.0 6.2 6.4 Ammonia (mg N/l) Day Flood <.09 <.09 .14 <.09 <.09 .10 Day Ebb <.09 <.09 <.09 <.09 Night Flood <.09 <.09 .10 .10 .15 Night Ebb <.09 .10 <.09 .14 Total Alkalinity (mg/l, CaCo₃) 55.0 60.0 Day Flood 49.0 54.0 67.0 51.0 Day Ebb 54.0 60.0 66.0 51.0 Night Flood 50.0 53.0 54.0 61.0 64.0 51.0 Night Ebb 55.0 60.0 65.0 51.0

	July 76	Sept 76	Nov 76	March 77	May 77	July 77
Station 1 (cont.) Nitrogen Saturation Day Flood Day Ebb Night Flood Night Ebb	(%)	99.3	97.8		100.5	100.1
Station 2 Temperature (°C)						
Day Flood Day Ebb	20.9	18.1	11.7	8.5	12.9 13.0	18.0 18.2
Night Flood Night Ebb	21.7	17.7	11.9 11.9	8.4 7.3	12.6 12.7	18.3 18.0
рн						
Day Flood Day Ebb Night Flood	8.0	7.8	7.6 8.5 7.5	7.7 8.0 7.4	8.5 8.5 8.8	7.6 7.7 8.1
Night Ebb	8.1	7.8	7.5	7.6	8.4	7.9
Salinity (0/00) Day Flood Day Ebb Night Flood	.09	.08	.16 .16 .16	.08 .12 .10	.10 .10 .18	.22 .18
Night Ebb	.10	.18	.04	.12	.12	.16
Dissolved Oxygen (mg Day Flood Day Ebb	10.1	9.3	10.1	13.2	11.5	8.6 9.0
Night Flood Night Ebb	9.8	8.9	10.0 9.8	12.1 13.3	10.8 10.9	8.8 8.3
Turbidity (FTU) Day Flood Day Ebb	4.8	5.0	3.0 3.2	4.6 4.6	8.0 6.0	4.1 4.5
Night Flood Night Ebb	7.0	10.5	3.1 2.6	5.8 4.3	5.8 4. 8	5.2 6.2
Ammonia (mg N/l)						
Day Flood Day Ebb	<.09	<.09	<.09 <.09	<.09 <.09	.11	.14
Night Flood Night Ebb	<.09	<.09	<.09 <.09	<.09 <.09	.15 .13	.14

	July 76	Sept 76	Nov 76	March 77	May 77	July 77
Station 2 (cont.)						
Total Alkalinity (mg,	/1, CaCo ₂)				
Day Flood	49.0	54.0	55.0	60.0	66.0	53.0
Day Ebb			54.0	61.0	68.0	52.0
Night Flood			56.0	60.0	66.0	51.0
Night Ebb	50.0	54.0	54.0	60.0	65.0	52.0
Nitrogen Saturation	(%)					
Day Flood	,					99.4
Day Ebb			98.2		100.9	
Night Flood						
Night Ebb	104.9	100.5				
Station 3						
Temperature (°C)						
Day Flood	21.7	18.2	11.7	6.8	12.7	18.0
Day Ebb			11.6	7.2	12.8	18.6
Night Flood			11.7	7.5	12.7	18.4
Night Ebb	19.2	17.9	11.7	6.8	12.6	18.0
рН						
Day Flood	7.8	7.7	7.5	8.2	8.3	7.9
Day Ebb	,.0	, ,	7.6	7.8	8.6	8.0
Night Flood			7.4	7.0	8.0	8.5
Night Ebb	7.6	7.6	7.5	7.3	8.5	7.9
Caliaite (0 (00)						
Salinity (0/00)	.10	.08	.12	.10	.10	.12
Day Flood Day Ebb	.10	.00	.14	.10	.10	.12
Night Flood			.08	.11	.10	.22
Night Ebb	.10	.04	.10	.12	.10	.22
Dissolved Oxygen (mg		0.0				
Day Flood	9.5	8.9	10.1	13.0	11.5	8.6
Day Ebb			10.1	13.2	12.0	8.8
Night Flood	0 0	0.0	10.1	12.2	10.3	8.5
Night Ebb	9.2	8.8	9.8	13.4	10.7	8.3
Turbidity (FTU)						
Day Flood	7.7	3.5	3.8	5.2		4.4
Day Ebb			3.9	4.0	3.8	4.6
Night Flood			2.0	6.2	5.8	5.0
Night Ebb	8.0	8.0	3.4	4.0	4.8	7.0

	July 76	Sept 76	Nov March 76 77	May 77	July 77
Station 3 (cont.) Ammonia (mg N/1)					
Day Flood Day Ebb	<.09	<.09	<.09 <.09 <.09 <.09	.10 <.09	<.09 <.09
Night Flood Night Ebb	<.09	<.09	<.09 <.09 <.09 <.09	<.09 .13	.13
Total Alkalinity (mg	1/1, CaCo ₃))			
Day Flood Day Ebb	48.0	54.0	55.0 60.0 54.0 61.0	67.0 69.0	52.0 52.0
Night Flood Night Ebb	49.0	54.0	55.0 60.0 55.0 60.0	64.0 69.0	51.0 51.0
Nitrogen Saturation	(%)				
Day Flood Day Ebb Night Flood		98.5	101.5		99.8
Night Ebb	102.5	99.3			
Station 6					
Temperature (°C)		10.0	11 4 6 0	12.6	10.1
Day Flood Day Ebb Night Flood	22.0	18.0	11.4 6.8 11.2 7.0 11.7 7.4	12.6 12.9 12.8	18.1 13.4 18.2
Night Ebb	19.1	17.7	11.8 7.4	12.6	18.0
Н					
Day Flood Day Ebb Night Flood	8.0	7.9	7.3 8.0 7.2 8.0 7.9 7.2	8.6 8.4 8.8	7.9 7.9 8.2
Night Ebb	7.4	7.0	7.3 7.4	8.5	8.0
Salinity (0/00)					
Day Flood Day Ebb	.09	.08	.12 .04 .12 .09	.13	.12
Night Flood Night Ebb	.12	.06	.12 .11 .12 .12	.10	.20 .21
Dissolved Oxygen (mo	gl)				
Day Flood		9.0	10.2 12.5	11.8	8.8
Day Ebb Night Flood	9.9		10.4 13.3 9.8 12.3	11.9 12.5	9.0 8.7
Night Ebb	9.3	8.8	10.1 13.4	11.9	8.0

	July 76	Sept 76	Nov 76	March 77	May 77	July 77
Station 6 (cont.) Turbidity (FTU)						
Day Flood		5.5	3.0	4.8	5.5	3.4
Day Ebb	6.8		3.0	4.8	4.2	4.5
Night Flood			1.8	3.8	3.8	3.0
Night Ebb	6.0	8.5	3.0	4.2	3.8	6.0
Ammonia (mg N/l)						
Day Flood		<.09	<.09	<.09	<.09	<.09
Day Ebb	<.09		<.09	<.09	<.09	<.09
Night Flood			<.09	<.09	.13	.17
Night Ebb	<.09	<.09	<.09		.10	<.09
Total Alkalinity (/ma/1 CaCo \					
Day Flood	, mg/1, caco3/	55.0	55.0	60.0	67.0	52.0
Day Ebb	48.0	33.0	55.0	60.0	68.0	51.0
Night Flood			54.0	61.0	68.0	51.0
Night Ebb	49.0	54.0				
Nibonen Cebuusti	- (0)					
Nitrogen Saturation Day Flood	on (8)					99.6
Day Ebb			98.5		100.4	33.0
Night Flood			50.5		100	
Night Ebb	104.3	99.3		101.1		
Station 9						
Temperature (°C) Day Flood	21.7	10.0				
Day Flood Day Ebb	21.7	18.0				
Night Flood						
Night Ebb	19.1	17.6				
рН						
Day Flood	8.0	7.7				
Day Ebb Night Flood						
Night Flood Night Ebb	7.5	6.7				
Highe LDD	1.5	0.,				

	July 76	Sept 76	No v 76	March 77	May 77	July 77
Station 9 (cont.)						
Salinity (0/00) Day Flood Day Ebb	.10	.08				
Night Flood Night Ebb	.12					
Dissolved Oxygen (r Day Flood Day Ebb	ngl) 10.2	8.9				
Night Flood Night Ebb	8.8	8.9				
Turbidity (FTU) Day Flood Day Ebb	6.5	6.5				
Night Flood Night Ebb	7.0	6.5				
Ammonia (mg N/l) Day Flood Day Ebb	<.09	<.09				
Night Flood Night Ebb		<.09				
Total Alkalinity (n Day Flood Day Ebb	ng/1,CaCo ₃) 49.0	55.0				
Night Flood Night Ebb	48.0	57.0				
Nitrogen Saturation Day Flood Day Ebb	n (%)					
Night Flood Night Ebb		99.5				
Station 10 Temperature (°C)						
Day Flood Day Ebb Night Flood	20.3	18.2	11.6 11.6 11.7	7.1 •7.6 7.3	13.0 12.9 12.5	8.3 18.5 18.3
Night Ebb	19.0	18.0	11.7	7.3	12.6	17.9

	July 76	Sept 76	Nov 76	March 77	May 77	Sept 77
Station 10 (cont.)						
pH Day Flood Day Ebb	8.1	7.7	7.8 7.7	8.0 7.9	8.7 8.5	7.8 7.6
Night Flood Night Ebb	7.5	7.2	8.1 7.9	7.5 7.4	8.7 8.5	8.0 7.9
Salinity (0/00) Day Flood Day Ebb	.10	.08	.11	.10	.09	.19
Night Flood Night Ebb	.12	.06	.11	.10	.12	.22
Dissolved Oxygen (mg) Day Flood	10.6	9.2	10.0	12.8	11.7	8.6
Day Ebb Night Flood Night Ebb	9.0	9.2	10.2 9.8 9.9	12.8 12.4 13.1	12.0 12.9 10.5	9.1 8.3 8.2
Turbidity (FTU)						
Day Flood Day Ebb	4.3	3.5	2.4	4.4	5.2 4.8	4.3
Night Flood Night Ebb	8.0	4.5	1.9 2.0	4.2 4.8	6.0 5.4	7.4 4.0
Ammonia (mg N/l) Day Flood Day Ebb	<.09	<.09	<.09 <.09	<.09 <.09	.10 <.09	.10
Night Flood Night Ebb	<.09	<.09	<.09 <.09	<.09 <.09	.12	.15
Total Alkalinity (mg,	/l, CaCo ₃)				
Day Flood Day Ebb	49.0	54.0	55.0 55.0 55.0	60.0 60.0 61.0	68.0 68.0 65.0	52.0 52.0 51.0
Night Flood Night Ebb	50.0	54.0	55.0	61.0	67.0	51.0
Nitrogen Saturation Day Flood	(%)					100.3
Day Ebb Night Flood			98.5		100.4	
Night Ebb	101.6	101.0		100.5		

	July 76	Sept 76	Nov 76	March 77	May 77	July 77
Station 11						
Temperature (°C)						
Day Flood	20.5	18.2	11.5	6.9	12.9	18.3
Day Ebb			11.6	7.5	12.9	18.7
Night Flood			11.5	7.4	12.8	18.2
Night Ebb	20.9	17.2	11.5	7.3	12.6	18.0
рн						
Day Flood	8.1	7.9	7.8	7.9	8.5	8.0
Day Ebb			7.7	7.8	8.6	8.0
Night Fl ∞ d			8.1	7.2	8.5	8.7
Night Ebb	9.0	7.4	7.9	7.4	8.5	8.0
Salinity (0/00)						
Day Flood	.10	.09	.11	.10	.12	.18
Day Ebb			.12	.12	., 08	.12
Night Flood			.08	.11	.10	.84
Night Ebb	.10	.06	.09	.12	.17	.24
Dissolved Oxygen	(mg1)					
Day Flood	9.9	9.2	10.1	12.6	11.6	8.6
Day Ebb			10.2	13.2	11.9	8.9
Night Flood			9.9	11.7	10.8	8.2
Night Ebb	9.9	8.4	10.0	13.1	10.8	8.4
Turbidity (FTU)						
Day Flood	4.2	3.0	2.1	4.6	4.0	3.8
Day Ebb			2.0	5.0	4.8	3.0
Night Flood			1.5	3.4	4.5	3.8
Night Ebb	5.5	6.0	1.7	4.0	5.0	4.2
Ammonia (mg N/l)						
Day Flood	<.09	<.09	<.09	.11	<.09	<.09
Day Ebb			<.09	<.09	<.09	<.09
Night Flood			<.09	<.09	.15	.15
Night Ebb	<.09	<.09	<.09	<.09	.13	.10
Total Alkalinity	(mg/l, CaCo ₃)					
Day Flood	48.0	53.0	54.0	38.0	67.0	51.0
Day Ebb			53.0	60.0	68.0	51.0
Night Flood			54.0	60.0	70.0	52.0
Night Ebb	47.0	56.0	54.0	60.0	67.0	51.0

	July 76	Sept 76	Nov 76	March 77	May 77	July 77
Station 11 (cont.) Nitrogen Saturation Day Flood Day Ebb Night Flood	૧ (%)		98.0		100.0	99.2
Night Ebb	105.0	99.5		100.7		
Station 12 Temperature (°C) Day Flood Day Ebb	19.7	18.2	11.4	6.9	12.9	18.4 18.6
Night Flood Night Ebb	18.8	18.2	11.5 11.5	6.8 6.8	12.8	18.7 18.3
рН						
Day Flood Day Ebb Night Flood	7.8	8.1	7.8 7.9 7.7	7.4 7.9	8.5 8.6 8.9	7.8 8.0 7.8
Night Ebb	7.7	8.1	7.7	7.5	8.7	7.6
Salinity (0/00) Day Flood Day Ebb Night Flood	.10	.10	.11	.10	.12	.92 1.22
Night Ebb	.12	.05	.14 .14	.10 .12	.12 .11	.28 .58
Dissolved Oxygen (Day Flood Day Ebb	mg1) 10.0	9.2	10.5	12.8	11.6 12.0	8.5 8.6
Night Flood Night Ebb	9.5	9.4	10.4 10.5	12.3 13.3	10.5 10.6	8.5 8.4
Turbidity (FTU) Day Flood Day Ebb Night Flood	6.0	4.7	3.0 4.2	4.3	3.0 6.0	2.7
Night Ebb	8.0	5.5	1.8 2.0	4.2 4.2	3.5 3.5	2.6 3.4
Ammonia (mg N/1) Day Flood Day Ebb	<.09	.11	<.09 <.09	<.09	<.09 <.09	<.09 <.09
Night Flood Night Ebb	<.09	.12	<.09 <.09	.10 <.09	<.09 .11	<.09 <.09

	July 76	Sept 76	Nov 76	March 77	May 77	July 77
Station 12 (cont.)						
Total Alkalinity	(mg/l, CaCo ₂)				
Day Flood	50.5	50.0	55.0	62.0	68.0	51.0
Day Ebb			55.0		68.0	51.0
Night Flood			55.0	61.0	66.0	51.0
Night Ebb	50.0	54.0	55.0	59.0	66.0	51.0
Nitrogen Saturati	on (%)					
Day Flood	(0)					99.8
Day Ebb			98.0		101.7	33.0
Night Flood						
Night Ebb	104.5	102.1		101.9		
Station A						
Temperature (°C)		17.0				
Day Flood	21.9	17.0				
Day Ebb Night Flood	21.9					
Night Ebb	22.3	17.6				
Might bbb	22.3	17.0				
рН						
Day Flood		7.9				
Day Ebb	7.9					
Night Flood						
Night Ebb	6.7	7.6				
Salinity (0/00)						
Day Flood		.07				
Day Ebb	.12	• • •				
Night Flood						
Night Ebb	.10	.08				
Dissolved Oxygen	(mgl)	0.6				
Day Flood	9.8	8.6				
Day Ebb Night Flood	9.6					
Night Flood Night Ebb	10.0	8.5				
HTGIIC DDD	10.0	0.5				
Turbidity (FTU)						`
Day Flood		10.0				
Day Ebb	7.0					
Night Flood						
Night Ebb	9.5	10.5				

	July 76	Sept 76	Nov 76	March 77	May 77	July 77
Station A (cont.)						
Ammonia (mg N/1)						
Day Flood		<.09				
Day Ebb	<.09					
Night Flood Night Ebb						
NIGHT EDD	<.09	<.09				
Total Alkalinity (mg/l, CaCo ₃)	1				
Day Flood	3, , =====3,	54.0				
Day Ebb	49.0					
Night Flood						
Night Ebb	51.0	54.0				
Nitrogen Saturatio	n (%)					
Day Flo d	(0)					
Day Ebb						
Night Flood						
Night Ebb	110.3	97.9				
Station B						
Temperature (°C)						
Day Flood		17.0				
Day Ebb	22.3	17.0				
Night Flood	22.0					
Night Ebb	22.1	17.5				
pH						
Day Flood Day Ebb	7.9	7.7				
Night Flood	7.9					
Night Ebb	7.8	7.7				
_						
Salinity (70/00)						
Day Flood	• •	. 07				
Day Ebb	.10					
Night Flood Night Ebb	.10	.10				
Night EDD	.10	.10				
Dissolved Oxygen (mgl)					
Day Flood		8.9				
Day Ebb	10.2					
Night Flood						
Night Ebb	9.7	8.5				

	July 76	Sept 76	Nov 76	March 77	May 77	July 77
Station B (cont.)						
Turbidity (FTU)						
Day Flood		9.5				
Day Ebb	7.5					
Night Flood Night Ebb	10.0	10.0				
Demonstration (2.2)						
Ammonia (mg N/1) Day Flood						
Day Flood Day Ebb	<.09	<.09				
Night Flood	1.09					
Night Ebb	<.09	<.09				
Total Alkalinity	(mg/l. CaCoa)					
Day Flood	(3/ 1/ 00003/	54.0				
Day Ebb	50.0					
Night Flood						
Night Ebb	48.0	56.0				
Nitrogen Saturati	on (%)					
Day Flood	,					
Day Ebb						
Night Flood						
Night Ebb	107.8	98.1				
Station C						
Temperature (°C)						
Day Flood		18.0	11.9	9.1	12.6	, 17.8
Day Ebb	22.1		11.9	8.5	12.8	/ 17.8
Night Flood			11.9	8.4	12.6	18.0
Night Ebb	21.9	17.7	12.0	7.7	12.4	18.0
рН						
Day Flood		7.8	7.6	7.8	8.8	7.8
Day Ebb	8.0		7.1	8.2	8.7	7.8
Night Flood			7.7	7.3	8.9	7.9
Night Ebb	8.4	7.3	7.9	7.7	8.2	7 6
Salinity (0/00)						
Day Flood		.04	.13	.10	.10	.25
Day Ebb	.11		.12	.13	.10	.21
Night Flood			.02	.11	.14	.21
Night Ebb	.05	.02	.14	.11	.11	.20

	July 76	Sept 76	Nov 77	March 76	May 77	July 77
Station C (cont.)						
Dissolved Oxygen	(mgl)					
Day Flood		8.5	10.0	13.2	11.7	8.4
Day Ebb	9.8		10.0	13.2	11.6	8.6
Night Flood Night Ebb	9.6	8.7	10.0 10.0	12.4 13.0	10.4 10.2	8.2 8.1
night bbb	J. 0	0.7	10.0	13.0	10.2	0.1
Turbidity (FTU)						
Day Flood	_	9.0	3.0	5.8	5.8	4.0
Day Ebb	7.0		3.4	4.,8	5.9	4.2
Night Flood	11.0	۰	2.8	4.8	4.2	7.2
Night Ebb	11.0	9.5	2.8	4.3	4.5	8.2
Ammonia (mg N/l)						
Day Flood		<.09	<.09	<.09	.15	<.09
Day Ebb	<.09		<.09		.11	<.09
Night Flood			<.09	<.09	.12	.16
Night Ebb	<.09	<.09	<.09	<.09	.18	.14
Total Alkalinity	(mg/l, CaCo ₂)					
Day Flood	···· 5/ 2/ 5205 3/	54.0	54.0	60.0	68.0	50.0
Day Ebb	49.0		54.0	60.0	68.0	51.0
Night Flood			55.0	61.0	68.0	53.0
Night Ebb	51.0	54.0	55.0	61.0	68.0	52.0
Nitrogen Saturati	on (8)					
Day Flood	Off(8)					99.1
Day Ebb			97.7		101.7	,,,,
Night Flood	106.1	98.1		100.8	2021	
Nigh: Ebb						
Chatian B						
Station D Temperature (°C)						
Day Flood		18.0				
Day Ebb	22.2	10.0				
Night Flood			٢			
Night Ebb	20.9	17.6				
••						
pH Day Flood		8.7				
Day Ebb	7.8	0./				
Night Flood	, ,,,					
Night Ebb	8.3	7.8				
4						

	July 76	Sept 76	Nov 76	March 77	May 77	July 77
Station D (cont.) Salinity (0/00)						
Day Flood Day Ebb	.16	.07				
Night Flood Night Ebb	.11	.07				
Dissolved Oxygen (Day Flood Day Ebb		8.6				
Night Flood	8.9					
Night Ebb	9.6	8.7				
Turbidity (FTU)						
Day Flood Day Ebb Night Flood	7.0	8.0				
Night Ebb	9.0	9.5				
Ammonia (mg N/1) Day Flood Day Ebb Night Flood Night Ebb	< 00	<.09				
	<.09 <.09	<.09				
Total Alkalinity (mg	3	55.0				
Day Ebb Night Flood	48.0					
Night Ebb	48.0	55.0				
Nitrogen Saturatio Day Flood Day Ebb	n (%)					
Night Flood Night Ebb	103.4	97.9				
Station E						
Temperature (°C) Day Flood Day Ebb	21.7	17.9	11.9 11.8	8.4 8.6	12.2 13.0	16.8 17.1
Night Flood Night Ebb	22.1	17.8	11.9 12.0	8.0 8.0	12.2 12.0	18.3

Appendix B3 (Concluded)

	July 76	Sept 76	Nov 76	March 77	May 77	July 77
Station E (cont.) pH						
Day Flood Day Ebb	8.0	7.7	7.6 7.5	7.9 8.2	8.2	7.4 7.5
Night Flood Night Ebb	8.0	7.3	7.3 8.2	7.5 7.7	8.7 8.0	7.8 7.6
Salinity (0/00 Day Flood		0.0	3.4	1.1	10	45
Day Ebb	.05	.06	.14	.11	.10	.45
Night Flood Night Ebb	.11	.04	.08	.11	.14	.20
Dissolved Oxygen (mg] Day Flood	1)	8.4	10.0	13.2	11.5	7.5
Day Ebb	9.9	0.4	10.0	13.1	11.6	8.1
Night Flood Night Ebb	9.6	8.7	10.1 10.0	12.4 12.7	10.3 8.7	8.4 8.0
Turbidity (FTU)			a =			
Day Flood Day Ebb	6.5	10.0	3.5 3.3	5.4 5.2	5.5 9.0	4.4 5.1
Night Flood	6.5		2.6	5.2	6.0	7.0
Night Ebb	8.0	9.5	4.0	3.7	6.0	7.0
Ammonia (mg N/1)						
Day Flood Day Ebb	<.09	<.09	<.09	<.09 <.09	.14 <.09	<.09 <.09
Night Flood	\. 09		<.09 <.09	<.09	.15	.16
Night Ebb	<.09	<.09	<.09	<.09	.20	.12
Total Alkalinity (mg/	/1, CaCo ₃				47.0	5. 0
Day Flood	40.0	54.0	55.0	60.0	67.0	54.0
Day Ebb	49.0		54.0	61.0	67.0 68.0	53.0
Night Flood Night Ebb	50.0	54.0	59.0 55.0	61.0 61.0	68.0	52.0 52.0
Nitrogen Saturation	(%)					98.8
Day Flood Day Ebb			98.3		101.7	90.0
Night Flood Night Ebb	105.4	98.8		101.2		

APPENDIX B4: NEKTON CAPTURED AT EACH STATION AND SAMPLING PERIOD, MARCH 1975-MAY 1976

Memodix Table B4

Nekton Captured at Each Station and Sampling Period--March 1975-May 1976.

March 1975	12	2	Station 3	10	11
Species Chinook Salmon					
Oncorhynchus tshawytscha	6	8	5	5	5
Coho Salmon Oncorhynchus kisutch	-	-	-	-	-
Chum Salmon Oncorhynchus keta	-	-	-		-
Eulachon Thaleichthys pacificus	-	-	-	1	-
Longfir Smelt Spirnchus thaleichthys	-	-	-	-	-
Threespine Stickleback Gasterosteus aculeatus	1	1	-	2	3
American Shad Alosa sapidissima	-	_	-	-	-
Starry Flounder Platichthys stellotus	7	-	1	7	2
Peamouth Mylocheilus caurinus	-		-	_	-
Sucker Catostomus macrocheilus	-	-	-	-	~
Carp Cyprinus carpio	-	-	-	-	-
Sculpin Cottus sp	-	-	-	-	-
Whitefish Prosopium williamsoni	-	-	-	-	-
Steelhead Salmo gairdneri	_	~	-	-	-
Lamprey Entosphenus tridentatus	-	-	-	-	-
Scokeye Oncorhynchus nerka	-	-	-		_

May 1975	12	2	Station 3	10	11
Species Chinook Salmon					
Oncorhynchus tshawytscha	162	108	87	49	59
Coho Salmon Oncorhynchus kisutch	-	_	3	_	_
Chum Salmon Oncorhynchus keta	-	3	2	-	2
Eulachon Thaleichthys pacificus	-	-	-	-	-
Longfin Smelt Spirinchus thaleichthys	-	-	-	-	_
Threespine Stickleback Gasterosteus aculeatus	-	43	5	1	4
American Shad Alosa sapidissima	-	9	-	4	1
Starry Flounder Platichthys stellotus	-	2	16	15	6
Peamouth Mylocheilus caurinus	-	27	-	-	-
Sucker Catostomus macrocheilus	-	-	1	-	-
Carp Cyprinus carpio	-	-	-	~	-
Sculpin Cottus sp	-	-	-	;	-
Whitefish Prosopiwm williamsoni	-	-	-	-	-
Steelhead Salmo gairdneri	-	-	-	-	-
Lamprey Entosphenus tridentatus	-	-	1	-	-
Sockeye Oncorhynchus nerka	-	-	-	-	-

July 1975	12	2	Station 3	10	11
Species Chinook Salmon					
Oncorhynchus tshawytscha	90	1	3,7	9	34
Coho Salmon Oncorhynchus kisutch	-	-	-	_	_
Chum Salmon Oncorhynchus keta	-	-	-	-	-
Eulachon Thaleichthys pacificus	-	-	-	_	-
Longfin Smelt Spirinchus thaleichthys	_	-	-	-	-
Threespine Stickleback Gasterosteus aculeatus	13	-	1	2	4
American Shad Alosa sapidissima	-	_	-	-	-
Starry Flounder Platichthys stellotus	4	10	168	58	98
Peamouth Mylocheilus caurinus	4	-	7	-	2
Sucker Catostomus macrocheilus	-	-	-	-	-
Carp Cyprinus carpio	-	-	-	-	1
Sculpin Cottus sp	-	_	-	-	1
Whitefish Prosopium williamsoni	-	-	-	-	-
Steelhead Salmo gairdneri	-	-	_	-	-
Lamprey Entosphenus tridentatus	· -	-	-	-	-
Sockeye Oncorhynchus nerka		-	-	-	-

August 1975		12	2	Station 3	10	11
Species Chinook Salmon Oneorhynchus tshawytscha		1	31	3	~	5
Coho Salmon Oncorhynchus kisutch		-		-	-	_
Chum Salmon Oncorhynchus keta		-	-	-	-	_
Eulachon Thaleichthys pacificus		-	-	-	-	_
Longfin Smelt Spirinchus thaleichthys		-	-	-	-	
Threespine Stickleback Gasterosteus aculeatus		-	-	2	-	-
American Shad Alosa sapidissima		-	-	-	-	1
Starry Flounder Platichthys stellotus	2 86	2	2	16	2	2
Peamouth Mylocheilus caurinus			-	2	-	2
Sucker Catostomus macrocheilus		-	1	3	1	-
Carp Cyprinus carpio		-	-	-	-	-
Sculpin Cottus sp		-	-	-	-	-
Whitfish Prosopium williamsoni		-	-	-	~	-
Steelhead • Salmo gairdneri		-	-	-	-	-
Lamprey Entosphenus tridentatus		-	-	-	-	-
Sockeye Oncorhynchus nerka		_	-	-	-	-

September 1975	12	2	Static 3	<u>on</u> 10	11
Species Chinook Salmon					
Oncorhynenus tshawytscha	31	2	16	2	-
Coho Salmon Oncorhynchus kisutch	-	-	-		-
Chum Salmon Oncorhynchus keta	-	-	-	_	-
Eulachon Thaleichthys pacificus		-	-	_	-
Longfin Smelt Spirinchul thaleichthys	-	-	-	-	-
Threespine Stickleback Gasterosteus aculeatus	16	-	-	-	-
American Shad Alosa sapidissima	1	-	3	-	-
Starry Flounder Platichthys stellotus	5	-	15	10	6
Peamouth Mylocheilus caurinus	-	28	6	3	2
Sucker Catostomus macrocheilus	4	-	1	-	-
Carp Cyprinus carpio	-		1	-	-
Sculpin Cottus sp	-	-	-	-	
Whitefish Prosopium williamsoni	-	-	-	-	-
Steelhead Salmo gairdneri	-	-	-	-	-
Lamprey Entosphenus tridentatus	-	-	-	-	-
Sockeye Oncorhynchus nerka	-	-	-	-	_

November 1975	12	2	Statio 3	<u>n</u>	11
Species Chinook Salmon Oncorhynchus tshawytscha	. 1	2	-	-	-
Coho Salmon Oncorhynchus kisutch	· _	-	-	-	_
Chum Salmon Oncorhynchus keta		-	-	-	-
Eulachon Thaleichthys pacificus	. -	-	-		-
Longfin Smelt Spirinchus thaleichthys			-	2	-
Threespine Stickleback Gasterosteus aculeatus	2	2	_	8	<u>:</u>
American Shad Alosa sapidissima	-	-	-	-	
Starry Flounder Platichthys stellotus	1	-	1 .	2	-
Peamouth Mylocheilus caurinus	-	-	-	-	2
Sucker Catostomus macrocheilus	-		_	-	-
Carp Cyprinus carpio	-	-	_	-	-
Sculpin Cottus sp	-	-	-	-	-
Whitefish Prosopium williamsoni	-	-	-	-	-
Steelhead Salmo gairdneri	••	-	-	-	_
Lamprey • Entosphenus tridentatus	-			_	-
Sockeye Oncorhynchus nerka	-	<u>-</u>	-	-	-

January 1976	12	2	Station 3	10	11
Species					
Chinook Salmon					
Oncorhynchus tshawytscha	-	-	2	1	3
Coho Salmon					
Oncorhynchus kisutch	-	-	-	-	-
Chum Salmon					
Oncorhynchus keta	-	-	-	-	-
Eulachon					
Thaleichthys pacificus	-	1	-	-	-
Longfin Smelt					
Spirinchus thaleichthys	-	-	_	-	-
Threespine Stickleback					
Gasterosteus aculeatus	1	1	-	3	3
American Shad				•	
Alosa sapidissima	5	-	-	-	-
Starry Flounder					
Platichthys stellotus	-	1	2	1	4
Peamouth					
Mylocheilus caurinus	-	-	-	-	•
Sucker					
Catostomus macrocheilus	••	6	1	-	-
Carp					
Cyprinus carpio	-	-	-	-	-
Sculpin					
Cottus sp	-	-	_	-	-
Whitefish					
Prosopium williamsoni	-	-	-	-	
Steelhead					•
Salmo gairdneri	5	-	-	-	-
Lamprey					
Entosphenus tridentatus	-	-	-	-	_
Sockeye					
Oncorhynchus nerka	-	-	-	-	=

March 1976	12	2	Station 3	10	11
Species					
Chinook Salmon					
Oncorhynchus tshawytscha	3	19	14	74	27
Coho Salmon					
Oncorhynchus kisutch	-	-	-	-	-
Chum Salmon Oncorhynchus keta	_	_	_	1	_
oncorngnenus ke tu				*	
Eulachon					
Thaleichthys pacificus	~	-	1	-	-
Longfin Smelt					
Spirinchus thaleichthys	_	_	_	_	-
Threespine Stickleback			_		,
Gasterosteus aculeatus	1	1	7	-	1
American Shad					
Alosa sapidissima	-	-	-	-	-
-					
Starry Flounder	_	_	19	_	1
Platichthys stellotus	_	_	19		1
Peamouth					
Mylocheilus caurinus	-	-	1	-	1
Sucker					
Catostomus macrocheilus	_	_	2	-	-
Carp					
Cyprinus carpio	_	-	_	-	_
Sculpin					
Cottus sp	-	-	-	-	-
Whitefish					
Prosopium williamsoni	-		_	1	_
11080ptum weteramoone					
Steelhead					
Salmo gairdneri	-	-	-	-	-
Lamprey					
Entosphenus tridentatus	-	-	_	-	-
•					
Sockeye	_			-	_
Oncorhynchus nerka					

Appendix Table B4 (concluded)

May 1976	12	2	Station 3	10	11
Species Chinook Salmon	12	2	3	10	11
Oncorhynchus tshawytscha	2152	47	6	89	388
Coho Salmon Oncorhynchus kisutch		-	-	-	1
Chum Salmon Oncorhynchus keta	-	_	_	-	-
Eulachon Thaleichthys pacificus	-	~	_	-	
Longfin Smelt Spirinchus thaleichthys	-	-	-	-	
Threespine Stickleback Gasterosteus aculeatus	4	7	-	-	5
American Shad Alosa sapidissima	51	14	2	7	12
Starry Flounder Platichthys stellotus	5	-	2	10	2
Peamouth Mylocheilus caurinus	-	54	-	_	1
Sucker Catostomus macrocheilus	5	-	-	_	1
Carp Cyprinus carpio	-	1	-	_	-
Sculpin Cottus sp	-	_	-	-	_
Whitefish Prosopium williamsoni	_	_	_	-	-
Steelhead Salmo gairdneri	_	2	-	_	-
Lamprey Entosphenus tridentatus	-	_	_	-	_
Sockeye Oncorhynchus nerka	1	-	-	-	-

APPENDIX B5: NEKTON CAPTURED AND MEAN WEIGHT
(IN GRAMS) PER INDIVIDUAL AT FACH STATION
AND SAMPLING TIME, MILLER SANDS
1976 - 1977

Appendix Table B5

Nekton Captured and Mean Weight (in Grams) Per Individual at Each Station and Sampling Time Miller Sands 1976 - 1977

Size Class 26-50		y 76	Ser	ot 76	Nov	76	Marc	h 77	May	77	Jul	y 77
Beach Seine	No.	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt
Sta 2 - Day	17	.91	6	1.03	-	-	-	-	-	-	-	-
Sta 2 - Night	2	.74	-	-	-	-	-	-	-	-	-	-
Sta 3 - Day	-	-	-	-	-	-	-	_	-	-	-	-
Sta 3 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta 5 - Day	•	-	3	.93	-	-	-	_	-	-	-	-
Sta 5 - Night	-	-	1	1.15	-	-	-	-	-	-	-	-
Sta 9 - Day	-	-	-	-	-	-	-	-	_	-	-	-
Sta 9 - Night	-	-	2	1.22	-	-	-	-	-	-	-	-
Sta 10 - Day	-	-	-	-	-	-	_	-	-	-	-	-
Sta 10 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta 11 - Day	-	-	-	-	-	-	-	_	-	-	-	-
Sta 11 - Night	1	.75	-	-	-	-	-	-	-	-	-	-
Total Day	17	.91 (.173)	9	1.31 (.130)	-	-	-	-	-	-	-	-
Total Night SD	3	.74 (.125)	3	1.20 (.051)	-	-	-	-	-	-	-	-

	Ju	ly 76	Sej	pt 76	Nov	Nov 76		March 77		May 77		ly 77
Fyke Net	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt
Sta A - Day	5	. 79	8	. 92	-	-	-	_	_	_	_	_
Sta A - Night	2	. 54	-	-	-	-	-	-	-	-	-	-
Sta B - Day	-	-	1	.80	-	-	-	-	-	-	-	-
Sta B - Night	-	-	-	-	-	-	-	-	-	-	1	.90
Sta C - Day	-	-	_	-	-	_	-	-	-	_	-	_
Sta C - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta D - Day	_	_	53	. 78	-	_	_	_	-	-	1	.60
Sta D - Night	2	. 79	5	.87	-	-	1	1.25	-	-	2	1.05
Sta E - Day		-	2	.75	-	-	_	-	-	-	-	-
Sta E - Night	3	.66	8	.81	-	-	-	~	-	-	-	-
Sta 6 - Day	_	-	-	-	_	-	-	-	-	-	-	-
Sta 6 - Night	1	. 95	-	-	-	~	-	-	-	-	-	-
Total Day	5	.79 (.193)	64	.80 (.202)	-		-	-	-	-	1	.60
Total Wight	8	.70 (.148)	13	.83	-	-	1	1.25	-	-	3	1.00

Species Peamouth Chub Mylocheilus caurinus (cont.)

Size Class 51-75	mm											
	Jul	ly 76	Se	pt 76	No	v 76	Mar	ch 77	Ma	y 77	July	y 77
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt
Sta 2 - Day	8	1.61	89	2.03	_	_	_	-	1	4.40	-	_
Sta 2 - Night	-	-	13	2.68	2	1.50	1	3.00	-	-	-	-
Sta 3 - Day	_	_	31	1.93	_	_	1	3.00	_	_	_	-
Sta 3 - Night	-	-	213	2.34	1	2.40	1	3.00	-	-	-	-
Sta 5 - Day	_	-	5	1.86	_	_	_	_	1	3.90	_	_
Sta 5 - Night	-	-	96	2.41	2	1.70	-	-	1	2.20	-	-
Sta 9 - Day	6	1.85	12	2.12	-	_	_	_	· _	_	_	_
Sta 9 - Night	1	3.86	57	2.35	1	2.00	-	-	-	-	-	-
Sta 10 - Day	-	_	6	2.21	-	-	-	-	_	_	-	_
Sta 10 - Night	-	-	11	2.28	-	-	-	-	-	-	-	-
Sta 11 - Day	-	_	5	-	-	-	_	-	_	-	-	-
Sta 11 - Night	-	-	12	2.59	-	-	-	-	-	-	-	-
Total Day	14	1.71 (.403)	148	2.02 (.333)	-	-	1	3.00	2	4.15 (.353)		
Total Night	1	3.86	402	2.37 (.374)	6	1.80 (.572)	2	3.00	1	2.20	-	-

Species: Peamouth Chub Mylocheilus caurinus (cont.)

Size Class 51-75 mm	July	76	Sep	t 76	No	v 76	March	1 77	Mar	y 77	Jul	.y 77
Fyke Net	No	Wt	No		No	Wt	No	Wt	No	Wt	No	Wt
Sta A - Day Sta A - Night	- -	- -	11	1.47	- -	- -	<u>-</u>	-	1 -	3.80	-	-
Sta B - Day Sta B - Night	-	-	8 -	1.94	1	- 1.80	-	-	-	-	-	- -
Sta C - Day Sta C - Night	-	-	11 4	2.07 2.04	1 -	-	- -	-	- -	-	-	-
Sta D - Day Sta D - Night	-	<u>-</u>	45 16	1.79 1.78	3 6	1.40 4.80	-	-	1	- 3.50	4	2.04
Sta E - Day Sta E - Night	<u>-</u>	-	2 11	2.23 1.66	1	1.50	-	-	-	-	-	
Sta 6 - Day Sta 6 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Total Day SD	-	-		1.81	5	1.43	-	-	1	3.80	-	-
Total Night SD	-	-	31	1.79 (.698)	7	4.37 (.096)	-	-	1	3.50	4	2.04 (.386)

Species: Peamouth Chub Mylocheilus caurinus (cont.)

	Ju	ly 76	Se	pt 76	Nov	76	Marc	h 77	Ma	y 77	Ju	Ly 77
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt
Sta 2 - Day	2	7.25	1	4.55	-	-	-	-	6	6.25	-	-
Sta 2 - Night	-	-	6	5.66	-	-	-	-	-	~	-	-
Sta 3 - Day	-	-	-	-	-	-	-	_	_	-	-	_
Sta 3 - Night	-	-	-	-	-	-	-	-	-	~	4	8.00
Sta 5 - Day	126	8.96	-	-	-	-	_	_	125	5.56	_	-
Sta 5 - Night	9	9.22	1	4.20	-	-	-	-	1	2.20	-	-
Sta 9 - Day	2	9.00	-	-	-	-	_	-	1	9.00	-	-
Sta 9 - Night	-	-	2	7.00	-	-	-	-	-	-	-	·
Sta 10 - Day	_	-	-	-	-	_	-	_	-	÷	-	_
Sta 10 - Night	1	10.00	-	-	-	-	-	-	-	. –	-	-
Sta 11 - Day	-	-	-	-	-	-	-	-	-	-	-	-
Sta 11 - Night	-	-	4	4.35	-	-	-	-	-	-	3	9.67
Total Day	130	8.93 (2.302)	1	4.55	-	-	-	-	132	5.62 (1.546)	-	-
Total Night SD	10	9.30 (1.337)	13	5.35 (1.231)	-	-	-	-	1	2.20	7	8.72 (1.380

	Ju	ly 76	Se	pt 76	No	v 76	Marc	h 77	Ma	y 77	Ju	ly 77
Fyke Net	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt
Sta A - Day	1	7.00	1	3.88	1	5.40	-	-	_	-	3	7.00
Sta A - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta B - Day	_	-	-	-	-	-	-	-	_	_	3	6.33
Sta B - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta C - Dt/	_	_	7	4.57	-	-	-	_	-	_	-	-
Sta C - Night	3	6.33	2	4.80	-	-	-	-	-	-	1	7.00
Sta D - Day	5	3.70	3	6.00	-	-	_	-	-	-	1	7.00
Sta D - Night	3	5.67	-	-	-		-	-	-	-	2	6.00
Sta E - Day	-	-	-	-	-	-	_	-	-	=	2	4.80
Sta E - Night	-	-	-	.	-	-	-	-	1	5.20	1	9.00
Sta 6 - Day	-	-	_	-	_	_	_	-	-	_	-	-
Sta 6 - Night	-	-	-	-		-	-	-	-	-	-	-
Total Day	6	4.25	11	4.90	1	5.40	-	-	-	-	9	6.29
SD		(1.541)		(1.025)								(1.703
Total Night	6	6.00 (2.097)	2	4.80 (.570)	-	-	-	-	1	5.20	4	7.00 (2.828

'n

Species: Peamouth Chub Mylocheilus caurinus (cont.)

Size Class 101-1	125 mm											
	Ju	ily 76	Se	pt 76	No	v 76	Marc	h 77	Ma	ay 77	Ju	ly 77
Beach Seine	No	Wt	No	Wt	No	Wt	Мо	Wt	No	Wt	No	Wt
Sta 2 - Day	3	6.67	-	-	_	-	-	_	-	_	_	_
Sta 2 - Night	2	8.00	3	16.67	-	-	-	-	-	-	-	-
Sta 3 - Day	2	16.50	_	-	_	-	-	-	-	-	_	_
Sta 3 - Night	-	-	1	18.50	-	-	-	-	-	-	19	11.11
Sta 5 - Day	130	13.29	_	-	_	-	_	_	-	-	2	14.50
Sta 5 - Night	1431	13.46	1	16.50	-	-	~	-	-	-	1	11.00
Sta 9 - Day	8	11.06	-	-	-	-	-	-	1	10.00	-	-
Sta 9 - Night	66	11.39	3	16.83	-	-	-	-	-	-	-	-
Sta 10 - Day	-	-	-	-	1	9.50	-	-	_	_	-	-
Sta 10 - Night	1	18.00	-	-	-	-	-	-	-	-	-	-
Sta 11 - Day	_	-	_	-	_	-	-	-	-	_	_	-
Sta 11 - Night	1	20.00	1	61.00	-	-	-	-	-	-	23	13.67
Total Day	143	13.07	-	_	1	9.50	-	-	1	10.00	2	14.50
SD		(3.52)										(2.12)
Total Night	1501	13.37	9	21.83	-	-	-	-	-	-	43	12.48
SD		(3.27)		(2.18)								(2.65)

Size Class 101-12	5 mm											
	Jul	y 76	Se	pt 76	Nov	76	Marc	h 77	Ma	y 77	Ju	ly 77
Fyke Net	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt
Sta A - Day	-	-	3	10.17	-	-	-	-	-	_	5	10.40
Sta A - Night	-	-	-	-	-	-	-	-	-	-	2	12.00
Sta B - Day	1	10.00	-	-	-	-	-	-	-	-	2	8.00
Sta B - Night	-	-	1	13.00	-	-	-	-	-	-	2	13.50
Sta C - Day	1	15.00	-	-	-	-	-	-	-	-	4	9. 18
Sta C - Night	1	9.00	1	14.00	-	-	-	-	-	-	4	11.75
Sta D - Day	-	-	5	16.40	-	-	-	-	1	8.00		8.75
Sta D - Night	-	-	-	-	-	-	-	-	-	-	1	12. 00
Sta E - Day	-	-	-	-	-	-	-	-	-	-	-	-
Sta E - Night	-	-	1	15.00	-	-	-	-	-	-	1	15.00
Sta 6 - Day	-	-	1	16.00	-	-	-	-	-	-	-	-
Sta 6 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Total Day SD	2	12.50 (3.54)	9	14.28 (1.87)	-	-	-	-	1	8.00	15	9.37 (1.75
Total Night	1	9.00	3	14.00 (1.00)	-	-	••	•	-	-	10	12.50 (2.59)

	Ju	ly 76	Se	pt 76	No	ov 77	Marc	h 76	Ma	xy 77	Ju	ly 77
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	<u>WL</u>
Sta 2 - Day	-	-	1	23.00	-	-	-	-	_	-	-	-
Sta 2 - Night	-	-	5	22.50	-	-	-	-	-	-	-	-
Sta 3 - Day	-	-	1	28.00	-	_	-	-	_	-	_	-
Sta 3 - Night	-	-	2	24.50	1	20.00	-	-	-	-	-	-
Sta 5 - Day	-	-	_	-	-	-	-	-	1	20.00	-	-
Sta 5 - Night	2	17.00	4	17.75	-	-	-	-	2	27.50	-	-
Sta 9 - Day	-	-	_	-	-	-	-	-	_	-	_	-
Sta 9 - Night	4	19.50	1	25.00	-	-	-	-	-	-	-	-
sta 10 - Day	-	-	-	-	-	-	-	-	-	-	-	-
Sta 10 - Night	2	15.00	1	26.50	-	-	-	-	-	-	-	-
Sta 11 - Day	-	-	4	~	-	-	-	-	-	-	-	-
Sta 11 - Night	-	-	6	20.17	1	15.50	-	-	-	-	2	20.75
Cotal Day	-	-	6	25.50 (3.536)	-	-	-	-	1	26.00	-	-
Potal Night	8	17.75 (4.621)	19	21.32 (3.309)	2	17.75 (3.180)	-	-	2	27.50 (13.435)	2	20.75 (1.76

	Jul	y 76	Se	pt 76	No	ov 76	Marc	h 77	Ma	ay 77	Ju	ly 77
Fyke Net	No	Wt.	No	Wt	No	Wt	No	Wt	No	-	No	-
Sta A - Day	-	-	7	19.93	-	-	-	-	-	-	-	_
Sta A ~ Night	-	-	-	-	1	10.00	-	-	-	-	-	-
Sta B - Day	-	-	3	18.67	-	~	-	-	2	30.00	2	16.00
Sta B - Night	-	-	-	-	-	-	-	-	-	-	=	-
Sta C - Day	-	-	5	19.10	_	-	-	-	-	_	_	_
Sta C - Night	-	-	-	-	-	-	+	-	-	-	-	-
Sta D - Day	-	-	4	16.88	-	_	-	-	1	18.00	_	_
Sta D - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta E - Day	-	-	1	22.00	-	-	-	-	-	-	_	-
Sta E - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta 6 - Day	-	-	1	21.50	-	-	-	-	-	-	-	-
Sta 6 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Total Day	-	-	21	19.14	-	-	-	-	3	24.00	2	16.00
BD				(3.738)						(7.210)		(1.414
Total Night SD	-	-	-	-	1	10.00	-	-	-	-	-	-

Size Claso 151-1	75 mm											
	Ju.	ly 76	Se	pt 76	Nov	76	Marc	h 77	M.	ay 77	Ju	ly 77
Beach Seine	No	Wt	No	Wt	No	Wt	NO	Wt	No	Wt	No	Wt
Sta 2 - Day	_	-	-	-	-	_	-	_	_	_	-	_
Sta 2 - Night	-	-	1	48.00	-	-	-	-	-	-	-	-
Sta 3 - Day	_	-	1	53.50	-	-	-	_	2	42.00	٠_	
Sta 3 - Night	-	-	1	33.50	-	_	-	-	-	-	1	29.00
Sta 5 - Day	2	38.50	-	-	-	-	-	_	_	-	_	_
Sta 5 - Night	-	-	2	38.50	-	-	-	-	-	-	-	-
Sta 9 - Day	-	-	-	-	-	-	-	-	-	-	-	-
Sta 9 - Night	1	38.00	3	51.33	-	-	-	-	-	-	-	-
Sta 10 - Day	-	-	-	-	-	-	-	-	-	-	-	-
Sta 10 - Night	1	50.00	-	-	-	-	-	-	-	-	-	-
Sta 11 - Day	2	42.50	1	-	-	-	-	_	-	-	-	-
Sta 11 - Night	-	-	-	-	-	-	-	-	-	-	1	39.00
Total Day	4	40.50 (2.309)	2	53.50	-	-	-	-	2	42.00	-	-
Total Night	2	44.00 (8.485)	7	44.64 (8.148)	-	-	-	-	-	-	2	33.50 (6.364

,	Ju	ly 76	Se	pt 76	Nov	76	Marc	h 77	Ma	y 77	Ju	ly 77
Fyke Net	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt
Sta A - Day	-	-	1	45.00	-	-	-	-	-	-	1	45.00
Sta A - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta B - Day	1	42.00	-	-	-	-	-	_	1	52.00	_	-
Sta B - Night	1	42.00	-	-	-	-	-	-	1	59.00	2	41.50
Sta C - Day	_	-	6	43.33	-	-	-	-	-	-	1	30.00
Sta C - Night	-	-	-	-	-	-	-	-	1	49.00	1	51.00
Sta D - Day	• -	-	2	43.50	-	-	-	_	_	-	3	39.00
Sta D - Night	-	-	-	-	-	-	-	-	-	-	1	47.00
Sta E - Day	-	-	2	47.25	-	-	-	-	-	-	-	-
Sta E - Night	-	-	-	-	-	-	-	-	-	-	1	44.00
5% 6 - Day	. 1	36.00	-	-	-	-	-	-	-	-	_	-
Sta 6 - Night	-		-	-	-	-	-	-	-	-	-	-
Total Day	2	39.00	11	44.23	-	-	-		1	52.00	5	38.40
SD		(4.24)		(3.281)								(5.77)
Total Night '	1	42.00	-	-	-		-	- .	2	54.00 (7.071)	· 5	45.00

	Ju:	ly 76	Se	pt 76	No	ov 76	Marc	h 77	Ma	ay 77	Ju	ly 77
Beach Seine	No	Wt	ИО	Wt	No	Wt	No	Wt	No	Wt	No	Wt
Sta 2 - Day	_	-	1	61.00	_	-	_	_	_	-	_	_
Sta 2 - Night	-	-	2	54.00	-	-	-	-	-	-	-	-
Sta 3 - Day	_	_	_	-	_	_	-	_	12	65.33	_	_
Sta 3 - Night	2	55.00	2	52.00	-	-	-	-	1	84.00	2	84.00
Sta 5 - Day	_	_	_	-	_	_	-	_	_	_	_	_
Sta 5 - Night	-	-	9	57.50	1	58.00	-	-	1	69.00	1	54.00
Sta 9 - Day	-	_	_	_	_	-	-	_	1	69.00	_	_
Sta 9 - Night	1	55.00	14	51.12	-	-	-	-	-	-	-	-
Sta 10 - Day	-	-	_	-	-	_	-	-	_	-	_	-
Sta 10 - Night	1	48.00	-	-	-	-	-	-	-	-	-	-
Sta 11 - Day	_	-	_	-	-	_	_	_	-	_	_	_
Sta 11 - Night	1	78.00	1	43.00	1	63.00	-	-	-	-	-	-
Total Day SD	-	-	1	61.00	-	•	-	-	13	65.61 (8.949)	-	-
Total Night		58.20 (11.670)	28	56.15 (7.350)	2	61.00 (3,536)	-	~	2	76.50 (10.607)	3	74.00

	Ju	ly 76	Se	pt 76	Nov	76	Marc	h 77	Ma	y 77	Ju	ly 77
Fyke Net	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt
Sta A - Day	-		5	47.38	-	_	_	_	2	57.00	1	85.00
Sta A - Night	-	-	-	-	-	-	-	-	1	70.00	-	-
Sta B - Day	3	49.67	_	-	-	-	-	-	6	67.00	-	-
Sta B - Night	-	-	-	-	-	-	-	-	2	63.50	-	-
ita C - Day	-	-	3	60.67	-	-	-	-	1	60.00	-	_
ta C - Night	-	-	1	48.00	-	-	-	-	-	-	1	82.00
ita D - Day	-	-	1	61.00	-	-	-	-	-	-	-	-
Sta D - Night	-	-	1	71.00	-	-	-	-	-	-	1	53.00
ta E - Day	1	58.00	1	73.00	-	-	-	-	1	68.00	2	84.00
Sta E - Night	-	-	-	-	-	-	-	-	-	-	-	-
ta 6 - Day	_	-	-	-	-	-	-	-	1	50.00	-	-
sta 6 - Night	-	-	-	-	-	-	-	-	-	-	-	-
otal Day	4	51.75 (6.850)	10	56.29 (8.157)	-	-	-	-	11	63.09 (9.864)	3	84.33 (4.04
Notal Night	-	-	2	60.00 (12.042)	-	-	-	-	3	65.67 (5.859)	2	67.50 (20.50

Species: Peamouth Chub Mylocheilus caurinus (cont.)

	July 76	Sept 76	Nov 76	March 77	May 77	July 77
Beach Seine	No Wt	No Wt	No Wt	No Wt	No Wt	No Wt
Sta 2 - Day						
Sta 2 - Night	1 88.00	3 95.33				
Sta 3 - Day		3 77.25		1 88.00	10 109.10	1 108.00
Sta 3 - Night		1 104.00	1 96.00		2 95.50	1 102.00
Sta 5 - Day	2 109.00					
Sta 5 - Night		7 75.73				1 107.00
Sta 9 - Day						10 120.55
Sta 9 - Night		2 102.50				
Sta 10 - Day						
Sta 10 - Night			1 89.00			
Sta 11 - Day	1 93.70					
Sta 11 - Night	* -	2 117.50	5 119.40			1 138.00
Total Day	3 103.70	3 77.25		1 88.00	10 109.10	11 119.41
SD	(10.504)	(3.180			(19.440)	(20.038)
Total Night	1 88.00	15 99.67 (17.483)	7 111.71 (22.088)		2 95.50 (4.950)	3 110.78 (21.879)

Species: Peamouth Chub Mylocheilus caurinus (cont.)

Size Class 201-250						
	July 76	Sept 76	Nov 76	March 77	May 77	July 77
Fyke Net	No Wt	No Wt	No Wt	No Wt	No Wt	No Wt
Sta A - Day						
Sta A - Night						
Sta B - Day	1 67.00				1 73.00	2 104.50
Sta B - Night			1 81.00			
Sta C - Day						1 123.30
Sta C - Night		2 64.00				4 101.00
Sta D - Day	4 89.95					1 92.00
Sta D - Night	1 88.00					
Sta E - Day	3 85.67	4 82.25			1 100.00	11 80.07
Sta E - Night		1 116.00				1 104.00
Sta 6 - Day						
Sta 6 - Night		-				1 82.00
Total Day	8 85.38	4 81.33			2 86.50	15 96.87
SD	(12,188)	(9.390)			(19.092)	(16.039)
Total Night	1 88.00	3 38.67	1 81.00			6 98.33
SD		(30.551)				(12.094)

Size Class 251-300		C	N 76	M		- > -
	July 76	Sept 76	Nov 76	March 77	May 77	July 77
Beach Seine	No Wt	No Wt	No Wt	No Wt	No Wt	No Wt
Sta 2 - Lay				-		
Sta 2 - Night		1 169.00				
Sta 3 - Day					1 199.00	
Sta 3 - Night						2 212.00
Sta 5 - Day						
Sta 5 - Night		1 168.00				
Sta 9 - Day						
Sta 9 - Night		2 136.50				
Sta 10 - Day						
Sta 10 - Night						
Sta 11 - Day	2 235.50					
Sta 11 - Night			2 241.5			
Total Day	2 235.50 (20.510)				1 199.00	
Total Night SD		4 152.50 (31.670)	2 241.5 (43.134)			2 212.00 (59.397)

Species: Peamouth Chub Mylochailus adminus (cont.)

Size Class 301-3	July	76	Sept	. 76	Nov	76	Marc	h 77	May	77	Jul	, 77
Beach Seine	No	Wt	No		No	Wt	No	Wt	No	Wt	No	Wt
Sta 2 - Day	-	_	_	-	-	_	_	_	-	_	_	_
Sta 2 - Night	-	-	1 32	9.00	-	-	-	-	-	-	-	-
Sta 3 - Day	-	-	_	-	-	_	-	_	1 40	05.00	_	-
Sta 3 - Night.	-	-		-	-	-	-	-	-	-	-	-
Sta 5 - Day	-	-	-	-	-	-	_	_	_	-	_	_
Sta 5 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta 9 - Day	-	-	-	-	-	-	_	-	-	-	-	-
Sta 9 - Night	-	-	-	-	-	-	-	-	1 2	90.00	-	-
Sta 10 - Day	-	-	-	-	-	-	-	-	~	-	-	-
Sta 10 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta 11 - Day	-	-	-	-	-	-	-	-	-	-	-	-
Sta 11 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Total Day	-	-	1 32	29.00	-	-	-	-	1 4	05.00	-	-
Total Night	-	-	-	-	-	-	-	-	1 2	90.00	-	-

Species: Chinook Salmon Oncorhynchus tshawytscha

Size Class 26-50		. 7.		. 76		2.5						
	July		Sep	t 76	иол	76	Max	ch 77	May	, 77	Jul	y 77
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Жt	No	Wt
Sta 2 - Day	-	-	_	-	-	_	350	.91	-	-	_	-
Sta 2 - Night	-	-	-	-	-	-	31	.10	-	-	-	-
Sta 3 - Day	-	-	-	-	-	-	156	1.04	-	-	-	-
Sta 3 - Night	-	· -	-	-	-	-	32	1.03	-	-	-	-
Sta 5 - Day	-	-	_	-	-	-	112	.83	-	-	-	-
Sta 5 - Night	-	-	-	-	-	-	12	94	-	-	-	-
Sta 9 - Day	-	-	-	-	-	-	160	1.14	-	-	-	-
Sta 9 - Night	-	-	-	-	-	-	36	. 96	-		-	-
Sta 10 - Day	-	-	-	-	-	-	2	1.10	-	-	-	-
Sta 10 - Night	-	-	-	-	-	-	134	. 94	-	-	-	-
Sta 11 - Day	-	-	-	-	-	-	12	.88	-	-	-	-
Sta 11 - Night	-	-	-	-	-	-	21	.71	-	-	-	-
Total Day	-	-	-	-	-	-	792	.97	-	-	-	-
SD Total Night			_	_	_	-	266	(.107) .84	-	-	-	-
SD							200	.84 (.269)				

Species: Chinook Salmon Oncorhynchus tshawytscha (cont.)

Size Class 26-50	mm											
	July	76	Sept	t 76	Nov	76	Mar	ch 77	May	77	Jul	y 77
Fyke Net	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt
Sta A - Day	-	-	-	-	-	-	1	.85	-	-	-	-
Sta A - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta B - Day	-	-	-	-	-	-	-	-	-	-	-	-
Sta B - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta C - Day	-	-	-	-	-	-	-	-	-	-	-	-
Sta C - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta D - Day	-	-	-	-	-	-	-	-	-	-	_	-
Sta D - Night	-	-	-	-	-	-	1	.92	-	-	-	-
Sta E - Day	-	-	-	-	-	-	-	-	-	-	-	-
Sta E - Night	••	-	-	-	-	-	2	.77	-	-	-	-
Sta 6 - Day	-	-	-	-	-	-	-	-	-	-	-	-
Sta 6 - Night	-	-	-	-	-	-	-	-	_	-	-	-
Total Day	-	-	-	-	-	-	1	.85	-	-	-	-
SD Total Night	_	_	_	_	_	_	3	.82	_	_	_	_
SD								(.106)				

Species: Chinook Salmon Oncorhynchus tshavytscha (cont.)

Size Class 51-75		y 76	Sep	t 76	Nov	Nov 76		ch 77	Ma	ay 77	July 77		
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	
Sta 2 - Day	-	-	_	-	-	-	7	1.73	2	5.00	-	_	
Sta 2 - Night	-	-	-	-	-	-	6	1.73	1	4.00	1	2.20	
Sta 3 - Day	-	-	-	-	-	-	4	1.68	_	-	-	-	
Sta 3 - Night	-	-	-	-	-	-	7	1.49	1	6.00	2	2.85	
Sta 5 - Day	-	-	_		_	_	4	1.65	1	2.00	4	3.85	
Sta 5 - Night	-	-	-		-	-	4	1.55	3	3.43	-	~	
Sta 9 - Day	_	_	_	-	-	-	4	1.93	2	5.50		~	
Sta 9 - Night	-	-	-	-	-	-	6	1.63	-	-	-	-	
Sta 10 - Day	-	-	-	-	-	-	1	1.60	-	-	-	-	
Sta 10 - Night	-	-	-	-	-	-	10	2.02	-	-	2	3.25	
Sta 11 - Day	-	-	-	-	-	-	12	2.03	-	_	_	-	
Sta 11 - Night	-	-	-	-	-	-	13	1.68	-	-	-	-	
Total Day	-	-	-	-	_	_	32	1.85	5	4.60	4	3.85	
SD		_						(.217)		(1.475)		(.590	
Total Night		•					46	1.71	5	4.06	5	2.88	
SD								(.213)		(1.113)		(.429	

Species: Chinook Salmon Oncorhynchus tshawutschu (cont.)

	July	y 76	Sep	t 76	Nov	76	Mar	ch 77	May	, 77	Ju	Ly 77
Fyke Net	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt
Sta A - Day	-	-	-	_	-	-	-	-	-	_	_	-
Sta A - Night	-	-	-	-	-	-	-	-	-	-		-
Sta B - Day	-	_	-	_	-	_	-	-	_	-	-	-
Sta B - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta C - Day	-	-	-	-	_	-	-	-	-	-	1	4.30
Sta C - Night	-	-	-	-	-	-	-	-	-	-	-	
Sta D - Day	-	-	-	-	-	_	1	1.50	_	-	-	-
Sta D - Night	-	-	-	-	-	-	-	-	-	-	1	2.10
Sta E - Day	-	-	-	-	-	-	-	-	_	-	-	-
Sta E - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta 6 - Day	-	-	-	-	-	-	-	-	-	-	-	-
Sta 6 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Total Day SD	-	-	-	-	-	-	1	1.50	-	-	1	4.30
Total Night	-	-	_	-	-	-	-	-	-	-	1	2.10

Species: Chinook Salmon Oncorhynchus tshuwytscha (cont.)

Size Class 76-100 mm July 76			Sen	ot 76	:lov	:10v 76		March 77		ıy 77	July 77	
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt
Sta 2 - Day	_	_	_	_	_	_	-	_	56	8.57	-	-
Sta 2 - Night	-	-	-	-	-	-	-	-	7	8.64	1	8.00
Sta 3 - Day	-	-	_	_	_	_	_	_	29	8.55	6	8.92
Sta 3 - Night	-	-	1	7.00	-	-	-	-	43	7.48	4	5.70
Sta 5 - Day	_	_	-	_	-	_	_	_	93	7.58	22	6.7]
Sta 5 - Night	-	-	-	-	-	-	-	-	13	7.12	38	9.12
Sta 9 - Day	-	-	-	-	-	-	-	-	30	9.39	5	9.08
Sta 9 - Night	-	-	-	-	-	-	-	-	23	9.73	5	8.62
Sta 10 - Day	-	-	-	-	-	-	-	-	28	8.76	-	-
Sta 10 - Night	-	-	-	-	-	-	-	-	10	8.75	-	-
Sta 11 - Day	-	-	-	-	-	-	-	-	10	8.95	_	-
Sta 11 - Night	6	11.50	-	-	-	-	-	-	1	10.00	1	10.00
Total Day	-	-	-	-	-	-	-	-	246	8.33 (1.417)	33	7.47 (1.000)
Total Night SD	6	11.50	1	7.00	-	-	-	-	97	8.27 (2.311)	49	8.78 (1.008)

Species: Chinook Salmon Oncorhynchus tshawytscha (cont.)

Size Class 76-10	00 mm											
	Ju	ly 76	Sep	t 76	Nov	76	Marc	ch 77	May	77	Ju	ly 77
Fyke Net	No	Wt	No	Wt	No	Wt	No	Wt	No_	Wt	No	Wt
Sta A - Day	-	-	-	-	-	-	-	_	_	_	_	-
Sta A - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta B - Day	-	-	_	_	-	-	_	_	-	_	-	_
Sta B - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta C - Day	-	-	-	-	_	-	_	_	-	-	2	4.25
Sta C - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta D - Day	-	-	-	-	-	_	_	-	-	-	2	5.15
Sta D - Night	1	5.00	-	-	-	-	-	-	-	-	1	9.00
Sta E - Day	-	-	-	_	-	-	-	-	-	-	_	-
Sta E - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta 6 - Day	-	-	_	-	-	-	-	-	_	_	-	-
Sta 6 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Total Day SD	-	-	-	-	-	-	-	-	-	-	4	4.70 (.636)
Total Might	1	5.00	-	-	-	-	-	-	-	-	1	9.00

Size Class 101-12	5 mm			•								
	Ju	ıly 76	Se	pt 76	No	ov 76	Ma	arch 77	Ma	ay 77	Ju	ly 77
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt
Sta 2 - Day	-	-	1	9.00	2	12.50	1	12.00	12	10.63	4	14.63
Sta 2 - Night		-	2	17.00	-	-	-	-	1	12.00	2	11.50
Sta 3 - Day	1	16.50	1	13.00	_	-	_	-	10	13.50	5	11.20
Sta 3 - Night	1	11.10	2		1	11.00	1	14.70	15	13.05	20	12.00
Sta 5 - Day	_	-	-	-	-	_	_	-	8	10.75	17	12.69
Sta 5 - Night	-	-	3	15.33	-	-	1	15.00	6	9.83	39	13.31
Sta 9 - Day	-	-	-	-	-	-	_	-	10	12.40	12	14.08
Sta 9 - Night	-	-	4	13.23	-	-	-	-	27	12.96	54	13.65
Sta 10 - Day	•	-	-	-		12.00	1	17.00		11.56		10.92
Sta 10 - Night	-	-	1	11.50	1	14.00	-	-	10	9.80	61	13.33
Sta 11 - Day	1	12.00	1	18.70	-	-	_	-	11	12.50	8	13.69
Sta 11 - Night	70	15.62	10	15.50	1	19.50	-	-	7	11.00	50	16.74
Total Day	2	14.25	3	13.57	3	12.33	2	14.50	60	11.90	52	12.97
SD		(3.182)		(4.875)		(.455)		(3.536)		(1.050)		(1.148)
Total Night	71	15.38	22	15.11	3	14.83	2	14.70	66	11.99	226	14.02
SD		(2.410)		(1.372)		(4.328)		(.354)		(1.470)		(1.553)

Species: Chinook Salmon Oncorhynchus tshawytscha (cont.)

Size Class 101-1		y 76	Sep	t 76	Nov	76	Marc	h 77	May	77	Ju	ly 77
Fyke Net	No	Wt	No	WŁ	No	Wt	No	Wt	No		No	
Sta A - Day	-	-	-	-	-	_	-	-	_	-	_	_
Sta A - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta B - Day	-	-	-	-	_	-	-	-	-	-	-	-
Sta B - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta C - Day	-	-	-	-	-	-	_	_	-	-	_	_
Sta C - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta D - Day	-	-	-	-	-	-	-	-	-		-	_
Sta D - Night	-	-	-	-	-	-	-	-	-	-	1	11.00
Sta E - Day		-	-	-	-	-		-	-	-	-	-
Sta E - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta 6 - Day	-	-	-	-	-	-	-	-	-	-	-	-
Sta 6 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Total Day	-	-	-	-	-	-	-	-	-	-	-	-
Total Night	-	-	-	-	-	-	-	-	-	-	1	11.00

4

Species: Chinook Salmon Oncorhynchus tshawytscha (cont.)

Size Class 151-1	75 mm									. '		
5120 Class 151-1	July	76	Sept	. 76	No	ov 76	Mar	ch 77	Ma	y 77	July	y 77
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt
Sta 2 - Day	-	_	_	_	_	-	_	_	_	_	_	_
Sta 2 - Night	-	-	-	-	-	-	2	37.30	-	-	-	-
Sta 3 - Day	-	-	_	-	-	-	-	_	_	-	-	_
Sta 3 - Night	-	-	-	-	-	-	2	50.00	2	34.50	-	-
Sta 5 - Day	-	-	-	-	_	_	-	_	-	-	-	_
Sta 5 - Night	-	-	-	-	-	-	1	54.00	-	-	-	-
Sta 9 - Day	-	-	_	-	-	_	-	-	_	_	-	_
Sta 9 - Night	-	-	-	-	-	-	1	39.00	-	-	-	-
Sta 10 - Day	-	-	-	-	-	-		-	_	-	-	-
Sta 10 - Night	-	-	-	-	-	-	1	49.00	-	-	-	-
Sta 11 - Day	-	-	_	-	-	-	-	-	-	-	-	-
Sta 11 - Night	-	-	-	-	1	30.00	1	48.00	-	-	-	-
Total Day	-	-	-	-	-	-	-	-	-	-	-	-
Total Night	-	-	-	-	1	30.00	8	45.63 (6.520)	2	34.50 (.710)	-	-

Species: Chinook Salmon Oncorhynchus tshawytscha (cont.)

	Ju	ly 76	Se	pt 76	No	ov 76	Ma	arch 77	Ma	y 77	Ju	ly 77
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No		No	Wt
Sta 2 - Day	-	_	-	-	-	-	_	_			_	_
Sta 2 - Night	-	-	4	20.06	-	-	1	26.00	-	-	-	-
Sta 3 - Day	-	_	2	25.25	_	_	· -		-	• -	1	20.00
Sta 3 - Night	-	-	9	20.06	3	23.00	1	26.00	5	23.80	1	19.00
Sta 5 - Day	-	_	_	-	1	15.00	-	-	-	-	-	_
Sta 5 - Night	-	-	-	-	-	-	-	-	-	•		-
Sta 9 - Day	-	-	1	22.50	3	20.33	-	-	-	-	_	• -
Sta 9 - Night	-	-	3	20.33	1	24.00	-	-	1	22.00	-	-
Sta 10 - Day	-	-	-	-	-	-	1	22.00	-	-	-	-
Sta 10 - Night	-	-	-	-	2	21.50	-	-	2	19.00	2	20.00
Sta 11 - Day	-	-	2	-	2	21.00	_	-	3	25.33	1	23.10
Sta 11 - Night	1	23.50	3	20.00	2	25.00	-	-	-	-	5	23.10
Total Day SD	-	-	5	24.33 (1.660)	6	19.64 (2.300)	1	22.00	3	25.33 (3.510)	2	18.00 (2.830)
Total Night SD	1	23.50	19	20.42 (.761)	8	23.28 (1.468)	2	26.00	8	22.38 (2.110)	8	21.81 (1.840)

Species: Chinook Salmon Oncorhynchus tshawytscha (cont.)

	July	76	Sept	76	No	ov 76	Ma	rch 77	May	77		
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt
Sta 2 - Day	-	-	_	-	-	-	1	58.00	-	_	~	_
Sta 2 - Night	-	-	-	-	-	-	-	_	-	-	-	-
Sta 3 - Day	-	_	_	_	-	-	_	-	_	-	_	_
Sta 3 - Night	-	-	-	-	-	-	1	46.00	-	-	-	-
Sta 5 - Day	_	-	-	-	1	65.50	-	-	-	-	-	_
Sta 5 - Night	-	-	-	-	-	-	-	••	-	-	-	-
Sta 9 - Day	-	-	-	-	-	-	-	-	-	-	~	-
Sta 9 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta 10 - Day	-	-	-	-	-	-	-	-	-	-	_	-
Sta 10 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta 11 - Day	-	-	-	-	-	-	-	-	-	-	-	-
Sta 11 - Might	-	- ,	-	-	-	-	5	55.60	-	-	-	-
Total Day SD	-	-	-	-	1	65.50	1	58.00	-	-	-	-
Total Night SD	-	-	-	-	-	-	6	53.93 (3.892)	-	-	-	•

Species: Chinook Salmon Oncorhynchus tshawytscha (cont.)

	July	76	Sep	t 16	Nov	76	Marc	h 77	May	77	July	y 77
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt
Sta 2 - Day	-	_	-	_	_	-	3 9	7.66	_	-	_	_
Sta 2 - Night	_	-	-	-	-	-	2 11	.5.50	-	-	-	-
Sta 3 - Day	-	-	-	~	-	-	-	-	-	_	-	_
Sta 3 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta 5 - Day	-	•	-	-	-	_	-	-	-	-	-	-
Sta 5 - Night	-	-	-	-	-	-	1 10	00.00	-	-	-	-
Sta 9 - Day	-	-	-	-	-	-	-	~	~	-	-	-
Sta 9 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta 10 - Day	-	-	-	-	-	-	-	-	-	-	-	-
Sta 10 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta 11 - Day	-	-	-	-	-	-	_	-	-	-	-	-
Sta 11 - Night	-	-	-	-	-	-	4 9	90.50	-	-	-	-
Total Day	-	-	-	-	-	-		97.66 (2.517)	-	-	-	-
Total Night	-	-	-	-	-	-		09.28 24.109)	-	-	-	-

Species: Starry Flounder Platichthys stellatus

Size Class 0-25 mm												
	Ju	ly 76	Sept	: 76	Nov	76	Marc	h 77	May	77	July	77
Beach Seine	No	Wt	No	Wt	No	Wt	1:0	Wt	No	Wt	No	Wt
Sta 2 - Day	-	-	-	-	-	-	-	_	-	-	-	
Sta 2 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta 3 - Day	-	-	-	-	-	-	-	-	_	-	-	-
Sta 3 - Night	-	-	-	-	-	-	-		-	-	-	-
Sta 5 - Day	-	-	-	-	-	-	-	_	-	_	-	-
Sta 5 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta 9 - Day	-	-	-	_	-	-	-	_	-	-	-	-
Sta 9 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta 10 - Day	<u> -</u> .	-	-	-	-	-	-	-	-	-	-	-
Sta 10 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta 11 - Day	4	.173	-	-	-	-	-	-	-	-	-	-
Sta 11 - Night	3	.184	-	-	-	-	-	-	-	-	-	-
Total Day	4	.173	-	-	-	-	-	_	-	-	-	-
SD		(.046)										
Total Night	3	.184 (.048)	-	-	•	-	-	-	-	-	-	-

Species: Starry Flounder Platichthys stellatus (cont.)

Size Class 26-50	men											
	Ju:	ly 76	Seg	pt 76	No	v 76	Marc	h 77	May	77	Ju	Ly 77
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt
Sta 2 - Day	11	.95	-	-	-	-	-	_	-	_	3	1.80
Sta 2 - Night	6	1.26	-	-	-	-	-	-	-	-	-	-
Sta 3 - Day	366	. 93	11	1.27	-		-	_	_	_	28	1.41
Sta 3 - Night	71	1.08	-	-	2	1.55	-	-	-	-	15	1.51
Sta 5 - Day	-	-	1	1.25	_	_	_	-	_	-	8	1.33
Sta 5 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta 9 - Day	10	1.66	-	_	-	-	-	_	_	-	1	2.00
Sta 9 - Night	32	1.16	-	-	-	-	-	-	-	-	-	-
Sta 10 - Day	16	.97	1	1.50	-	-	_	-	_	-	13	1.15
Sta 10 - Night	73	. 39	-	-	-	-	-	-	-	-	-	-
Sta 11 - Day	50	.97	213	_	6	1.91	-	-	-	-	64	1.34
Sta 11 - Night	100	.83	53	1.43	-	-	-	-	-	-	25	1.20
Total Day SD	453	.95 (.127)	226	1.34 (.139)	6	1.91 (.580)	-	-	_	-	117	1.35
Total Night	282	.88 (.309)	53	1.43 (.210).	2	1.55 (.070)	-	-	-	-	40	1.29 (.156)

Species: Starry Flounder Platichthys stellatus (cont.)

Size Class 26-50		y 76	Sej	. 76	Nov	76	Marc	h 77	May	77	.Tu1	ly 77
Pyke Net	No	Wt	No		No	Wt	No	Wt	No	Wt	No	Wt
Sta A - Day	-	-	-	-	-	-	-	-	-	-	-	-
Sta A - Night	2	.54	-	-	-	-	-	-	-	-	-	-
Sta B - Day	-	-	-	_	-	_	_	_	-	_	_	_
Sta B - Night	•	-	-	-	-	-	-	-	-	-	-	-
Sta C - Day	_	-	-	_	_	_	_	_	-	_	-	-
Sta C - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta D - Day	-	_	-	-	-	-	-	-	_	-	1	1.00
Sta D - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta E - Day	-	-	-	_	-	_	-	-	_	_	1	1.80
Sta E - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta 6 - Day	-	_	-	-	_	_	_	_	-	-	-	-
Sta 6 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Total Day	-	-	-	-	-	-	-	-	-	-	2	2.40 (.566)
Total Night	2	.54 (.010)	-	-	-	-	-	-	-	-	-	-

Species: Starry Flounder Platichthys stellatus (cont.)

Siar Class 51-75 m	m											
	Jul	y 76	Sep	ot 76	No	v 76	Mar	ch 77	Ma	y 77	Ju	ly 77
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No_	Wt	No	Wt
Sta 2 - Day	15	3.18	14	2.96	1	1.80	3	4.67	-	_	_	-
Sta 2 - Night	5	3.11	-	-	1	3.40	-	-	-	-	1	4.90
Sta 3 - Day	2	3.94	29	2.16	9	2.53	4	3.25	1	2.00	13	3.03
Sta 3 - Night	6	3.25	-	-	50	3.18	2	3.50	-	-	31	4.00
Sta 5 - Day	1	5.00	-	-	-	_	-	_	-	-	15	5.04
Sta 5 - Night	-	-	-	-	1	4.40	-	-	-	-	1	5.80
Sta 9 - Day	16	3.62	-	-	1	3.30	_	-	-	_	7	4.80
Sta 9 - Night	32	2.86	-	-	-	-	2	4.00	-	-	-	-
Sta 10 - Day	8*	3.73	4	3.23	9	3.08	_	-	-	-	8	2.54
Sta 10 - Night	6	3.68	-	-	-	-	-	-	-	-	-	-
Sta 11 - Day	5	2.41	8	-	12	3.04	9	4.22	-	-	7	2.43
Sta 11 - Night	8	3.13	53	3.32	99	2.85	2	3.00	-	-	14	3.49
Total Day SD	47	3.41 (.494)	55	2.49 (.425)	32	2.88 (.289)	16	4.06 (.530)	1	2.00	50	3.72 (1.130)
Total Night SD	57	3.16 (.230)	53	3.32 (.520)	151	2.97 (.241)	6	3.50 (.450)	-	-	47	3.91 (.412)

Species: Starry Flounder Platichthys stellatus (cont.)

	Jul	ly 76	Seg	ot 76	Nov	76	Marc	h 77	May	77	July	y 77
Fyke Net	No	Wt	No		No	Wt	No	Wt	No	Wt	No	Wt
Sta A - Day	2	4.80	_	-	-	-	-	-	_	-	_	-
Sta A - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta B - Day	_	-	-	-	-	_	-	-	-	-	-	-
Sta B - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta C - Day	-	_	-	-	-	-	_	-	-	-	-	-
Sta C - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta D - Day	-	-	1	4.55	_	-	-	-	-	-	-	
Sta D - Night	-	-	-	-	-	-	-		-	-	-	•
Sta E - Day	-	-	-	-	-	-	-	-	-	-	-	
Sta E - Night	-	-	-	-	-	-	-	-	-	-	-	•
Sta 6 - Day	-	-	-	-	-	-	-	-	-	-	-	
Sta 6 - Night	-	-	-	-	-	-	-	-	-	-	-	•
Total Day	2	4.80	1	4.55	-	-	~	-	-	-	-	•
Total Might	-	-	-	-	-	-	-	-	-	-	-	

Species: Starry Flounder Platichthys stellatus (cont.)

No -	- - - -	No	<u>Wt</u> - -	No 1 1	%t 6.70 7.20	No -	Wt.	No	y 77 Wt	No -	1y 77 Wt
-	- - -	- - 1	- -			-	_	_	-	_	_
- - -	- - -	1	-	1	7 20						
<u>-</u>	-	1			7.20	-	-	-	-	-	-
-	-		9.50	_	-	_	_	2	8.50		_
		-	-	2	7.70	-	-	13	10.11	-	-
-	-	_	_	_	_	_	_	_	_	_	_
-	-	-	-	-	-	-	-	2	10.00	4	7.33
1	6.33	-	-	-	-	-	_	_	-	1	10.50
1	4.00	1	15.00	-	-	-	-	7	10.43	_	-
1	7.50	-	-	-	-	-	-	1	9.00	-	_
-	-	-	-	-	-	-	-	4	8.63	-	-
_	-	1	-	-	-	2	6.00	2	7.75	_	_
-	~	1	5.60	3	7.33	-	-	8	2.24	-	-
2	6.92	2	9.50	1	6.70	2	6.00	5	8.30	1	10.50
	(.739)						(8.370)		(.542)		
1	4.00	2	6.65	6	7.41 (.657)	-	-	34	8.14	4	7.33 (3.800
	1 1 - - - 2	1 6.33 1 4.00 1 7.50 2 6.92 (.739)	1 6.33 - 1 4.00 1 1 7.50 1 1 2 6.92 (.739)	1 6.33 1 15.00 1 7.50 1 5.60 2 6.92 2 9.50 (.739)	1 6.33	1 6.33	1 6.33	1 6.33	1 6.33 7 1 4.00 1 15.00 7 1 7.50 1 1 2 6.00 2 1 5.60 3 7.33 8 2 6.92 2 9.50 1 6.70 2 6.00 5 (.739)	1 6.33 7 10.43 1 7.50 1 9.00 4 8.63 1 2 6.00 2 7.75 1 5.60 3 7.33 8 2.24 2 6.92 2 9.50 1 6.70 2 6.00 5 8.30 (7.739) (8.370) (5.542)	1 6.33

Species: Starry Flounder Platichthys stellatus (cont.)

Size Class 101-12	5 mm											
	Jul	y 76	Sep	t 76	No	v 76	Mai	rch 77	Ma	ay 77	Ju	ly 77
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt
Sta 2 - Day	_	-	-	-	-	-	-	-	-	_		-
Sta 2 - Night	-	-	-	-	-	-	-	-	-	-	-	-
Sta 3 - Day	-	-	-	-	_	-	-	-	-	-	-	_
Sta 3 - Night	-	-	-	-	1	16.00	1	16.00	2	19.00	-	-
Sta 5 - Day	_	-	_	-	_	-	-	-	-	_	2	23.00
Sta 5 - Night	-	-	-	-	-	-	1	25.00	10	20.80	-	-
Sta 9 - Day	_	-	_	_	_	_	_	-	1	21.00	-	-
Sta 9 - Night	-	-	-	-	-	-	-	-	3	20.00	1	28.00
Sta 10 - Day	2	20.50	_	-	-	-	1	15.00	3	17.33	-	-
Sta 10 - Night	-	-	-	-	-	-	-	-	3	16.67	-	-
Sta 11 - Day	_	-	-	-	-	-	-	-	1	24.00	-	-
Sta 11 - Night	-	-	-	-	-	-	-	-	-	-	2	23.5 0
Total Day	2	20.50	-	-	-	-	1	15.00	5	19.40 (3.000)	2	23.00
Total Night	-	-	-	-	1	16.00	2	20.50	18	19.78 (1.530)	3	25.00 (2.598

Species: Starry Flounder Platichthys stellatus (cont.)

Size Class 126-150	mm (
	Ju	ly 76	Se	pt 76	N	ov 76	Mar	ch 77	Ma	ay 77	Ju	1у ч
Beach Seine	No	Wt	No	Wt	NO	Wt	No	Wt	No	Wt	No	
Sta 2 - Day	-	-	-	-	_	-	-	-	_	-	_	
Sta 2 - Night	-	-	~	-	-	-	2	30.00	-	· -	-	
Sta 3 - Day	1	28.00	1	33.00	-	-	_	-	2	29.50	-	
Sta 3 - Night	-	-	-	-	8	29.38	1	27.00	13	32.78	2	34
Sta 5 - Day	-	-	-	-	-	-	-	_	_	-	14	32
Sta 5 - Night	-	-	-	-	-	-	-	-	3	33.33	2	30
Sta 9 - Day	1	35.50	-	-	_	-	-	-	-	-	2	41
Sta 9 - Night	-	-	1	32.00	1	30.00	-	-	3	31.67	2	311
Sta 10 - Day	-	-	-	-	-	-	-	-	-	-	-	
Sta 10 - Night	-	-	-	-	-	-	-	-	3	27.53	1	34
Sta 11 - Day	1	41.00	4	-	-	-	1	40.00	1	40.00	1	38.
Sta 11 - Night	-	-	-	-	-	-	-	-	-	-	4	31
Total Day SD	3	34.83 (6.526)	5	33.00	-	-	1	40.00	3	33.00 (6.060)	17	3 : (:
Total Night SD	-	-	1	32.00	9	29.45 (.210)	3	29.00 (1.730)	22	31.99 (1.830)	11	21 (3)

Species: Starry Flounder Platichthys stellatus (cont.)

	July 76	Sept 76	Nov 76	March 77	May 77	July *
Beach Seine	No Wt	No Wt	No Wt	No Wt	No Wt	No
Sta 2 - Day					- -	_]
Sta 2 - Night			2 33.00	2 51.00		
Sta 3 - Day					3 53.67	_
Sta 3 - Night			42 43.43	3 57.00	5 58.20	1 69
Sta 5 - Day				1 55.00		1 69
Sta 5 - Night				3 34.67	1 53.00	-]
Sta 9 - Day	1 48.50					_
Sta 9 - Night	1 48.50	4 45.63		1 55.00		1 42
Sta 10 - Day	1 44.50					_
Sta 10 - Night						1 56
Sta 11 - Day		5 -		1 75.00		_
Sta 11 - Night				1 41.00		1 50
Total Day SD	2 46.50 (2.830)	5 -		2 65.00 (14.140)	3 53.67 (8.390)	1 69
Total Night SD	1 48.50	4 45.63 (9.460)	44 42.96 (2.110)	10 47.75 (7.300)	6 55.60 (15.470)	4 54 (11)

Species: Starry Flounder Platichthys stellatus (cont.)

- ·· 	July	y 76	Sept	t 76	ИО	v 76	'farc	h 77	May	77	July
yke Net	No		No		110	Wt	No	Wt	No		No
Sta A - Day	-	-	-	-	_	-	-	-	-	-	-
Sta A - Night	-	-	-	-	1	37.00	-	-	-	-	-
Sta B - Day	-	-	-	-	-	-	-	-	-	-	-
ta B - Night	-	-	-	-	-	-	-	-	-	-	-
ta C - Day	-	_	-	-		-	-	-	-	-	-
ta C - Night	-	-	-	-	-	-	-	-	-	-	-
ita D - Day	_	_	-	-	-	_	-	-	-	-	-
ta D - Night	-	-	-	-	-	-	-	-	-	-	-
ta E - Day	-	-	-	•	-	-	-	-	-		-
ta E - Night	-	-	-	-	•	-	-	-	-	-	-
ta 6 - Day	-	-	-	-	-	-	-	-	-	-	-
ta 6 - Night	-	-	-	-	-	-	-	-	-	-	-
otal Day	-	-	-	-	-	-	-	-	-	-	-
D					_						
ot al N ight D	-	-	-	-	1	37.00	-	-	-	-	-

Species: Starry Flounder Platichthys stellatus (cont.)

Size Class 176-20												
	July	76	Se	pt 76	No	v 76	Ma	rch 77	Ma	ay 77	Ju	1 y 😘
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	_
Sta 2 - Day	-	-	_	-	_		_	-	_	~	-	Ī
Sta 2 - Night	-	-	-	-	-	-	1	79.00	-	-	-	Ī
Sta 3 - Day	-	_	1	61.00	-	-	1	71.00	13	77.38	-	
Sta 3 - Night	-	-	-	-	2	62.00	1	100.00	4	65.00	-	
Sta 5 - Day	-	-	-	-	-	-	-	_	-	-	_	1
Sta 5 - Night	-	-	-	-	-	-	-	-	-	-	-	
Sta 9 - Day	-	-	-	-	_	-	-	-	_	_	-	
Sta 9 - Night	-	-	1	67.00	-	-	-	. -	-	-	-	
Sta 10 - Day	-	_	1	60.00	-	-	-	-	1	76.00	1	71
Sta 10 - Night	-	-	-	-	-	-	-	-	-	-	-	
Sta 11 - Day	-	-	1	-	-	-	1	76.00	-	-	-	
Sta 11 - Night	-	-	-	-	-	-	-	-	-	-	1	68
Total Day	-	-	3	60.50	-	-	2	73.50 (3.540)	14	76.69 (9.9 10)	1	72
Total Night	-	-	1	67.00	2	62.00	2	89.50 (14.850)	4	65.00 (10.920)	1	6 8.

Species: Starry Flounder Platichthys stellatus (cont.)

	Jul	y 76	Sep	t 76	Nov	76	Marc	h 77	Ma	y 77	Ju
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	<u>No</u>
Sta 2 - Day	_	_	_	_	-	_	-	-	-	_	_
Sta 2 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 3 - Day	-	-	-	-	-	-	-	-	1 1	132.00	-
Sta 3 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 5 - Day	•	-	-	-	-	-	-	-	-	-	
Sta 5 - Night	-	-	-	-	-	-	1 1	07.00	-	-	-
Sta 9 - Day	• -	-	-	-	-	_	-	-	-	_	-
Sta 9 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 10 - Day	-	-	-	-	-	-	-	-	-	_	-
Sta 10 - Night	, -	-	-	-	-	-	-	-	-	-	-
Sta 11 - Day	-	-	-	-	-	-	-	-	-	-	-
Sta 11 - Night	-	-	-	-	-	-	-	-	-	-	-
Total Day SD	-	-	-	-	-	-	-	-	1	13.20	-
Total Night	-	-	-	-	-	-	1 1	07.00	-	-	-

	Jul	ly 76	Sep	t 76	Nov	76	Mar	ch 77	May	77	Ju
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No
Sta 2 - Day	5	.60	-	-	-	-	-	-	-	-	-
Sta 2 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 3 - Day	-	_	_	_	_	-	-	_	_	-	-
Sta 3 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 5 - Day	2	.55	-	_	_	-	-	-	-	-	-
Sta 5 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 9 - Day	_	-	-	-	-	-	-	-		-	-
Sta 9 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 10 - Day	-	-	-	-	-	• -	-	-	-		-
Sta 10 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 11 - Day	-	-	-	-	_	-	-	-	-	-	_
Sta 11 - Night	-	-	-	-	-	-	-	-	-	-	-
Total Day SD	7	.59 (.218)	-	-	-	-	-	-	-	-	-
Total Night SD	-	(.210)	-	-	-	-	-	-	-	-	-

	Jul	y 76	Se	pt 76	No	v 76	Marc	h 77	May	77	
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	
Sta 2 - Day	_	-	_	_	-	_	-	-	-	-	
Sta 2 - Night	-	-	-	-	1	2.30	-	-	-	-	
Sta 3 - Day		_	_	_	-	-	-	_	_	_	
Sta 3 - Night	-	-	-	-	4	2.15	-	-	~	-	
Stu 5 - Day	-	_	2	1.70	_	-	_	-	_	-	
Sta 5 - Night	-	-	-	-	-	-	-	-	-	-	
Sta 9 - Day	-	-	-	-	-	-	-	-	-	_	
Sta 9 - Night	-	-	1	2.48	-	-	-	-	-	-	
Sta 10 - Day	_	-	-	-	-	-	-	-	-	-	
Sta 10 - Night	-	-	-	-	-	-	-	-	-	-	
Sta 11 - Day	_	-	-	-	-	-	-	-	-	-	
Sta 11 - Night	-	-	-	-	-	-	-	-	-	-	
Total Day	-	-	2	1.70	-	-	-	-	-	-	
SD				(.210)						,	
Total Night	-	-	1	2.48	5	2.18 (.192)	-	-	-	-	

Species: Largescale Sucker Catostomus macrocheilus (cont.)

	Size Class 51-75	mm										
		July	76	Sep	t 76	No	v 76	Marc	h 77	May	77	Ju
	Fyke Net	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No.
	Sta A - Day	-	-	-	-	_	_	_	_	_	_	_
	Sta A - Night	-	-	-	~	-	-	-	-	-	-	••
	Sta B - Day	-	_	-	-	_	_	-	_	_	_	_
	Sta B - Night	-	-	-	-	-	-	-	-	-	-	-
	Sta C - Day	-	-	-	-	-	-	_	-	-	-	-
	Sta C - Night	-	-	-	-	-	•	-	-	-	-	
198	Sta D - Day	-	-	2	1.81	_	-	_	-	_	-	-
8	Sta D - Night	•	-	-	-	1	2.70	-	-	-	-	~
	Sta E - Day	-	_	_	_	_	_	_	_	-	-	_
	Sta E - Night	-	-	-	-	-	-	-	-	-	-	-
	Sta 6 - Day	-	-	-	-	-	_	_	_	_	-	_
	Sta 6 - Night	-	-	-	-	-	-	-	-	-	-	-
	Total Day	-	-	2	1.81	-	-	-	-	-	-	<u> </u>
	SD Total Night	-	_	_	(.580) -	1	2.70	_	-	-	_	_
	SD											

198

Size Class	76-100	men			
		Jul	y 76	Sept	76
Beach Seine		No	Wt	No	Wt.

	July 76	Sep	t 76	No	v 76	Marc	h 77	Ma	y 77	Jul
Beach Seine	No Wt	No	Wt	No	Wt	No	Wt	No	Wt	No
Sta 2 - Day		_	-	-	-	-	_	_	-	-
Sta 2 - Night		-	-	-	-	-	-	-	-	-
Sta 3 - Day		_	-	_	-	_	-	-	_	_
Sta 3 - Night		-	-	1	7.60	-	-	-	-	-
Sta 5 - Day		-	-	-	-	-	-	1	9.00	-
Sta 5 - Night		-	-	-	-	-	-	-	-	-
Sta 9 - Day		-	-	-	_	-	_	-	-	-
Sta 9 - Night		-	-	-	-	-	-	-	-	-
Sta 10 - Day		-	_	-	-	-	-	-	-	-
Sta 10 - Night		-	-	-	-	-	-	-	-	-
Sta 11 - Day		-	-	-	-	-	-	-	-	-
Sta 11 - Night		-	~	-	-	-	-	-	-	-
Total Day SD		-	-	-	-	-	-	1	9.00	-
Total Night SD		-	-	1	7.60	~	-	-	-	-

Species: Largescale SuckerCatostomus macrocheilus (cont.)

	July	76	Sep	t 76	No	v 76	Marc	h 77	May	77	July
Fyke Net	No	Wt	No_	Wt	No	Wt	No	Wt	No	Wt	No
Sta A - Day	-	-	_	_	-	-	_	_	_	-	_
Sta A - Night	-	-	-	-	-	-	-	-	-	- ;	, . -
Sta B - Day	_	_	_	_	_	-	_	_	-	- 3) - 1
Sta B - Night	-	-	-	-	-	-	-	-	-	- 3	
Sta C - Day	-	-	-	-	-	_	_	_	_	_ 1	
Sta C - Night	-	-	-	-	1	5.90	-	-	-		
Sta D - Day	-	-	_	-	-	-	_	-	-	22 gr. ĝ	-
Sta D - Night	-	-	-	-	-	-	-	-	-		(): -
Sta E - Day	-	-	-	-	-	-	-	-	-	A STATE OF THE STA	170 913 -
Sta E - Night	-	-	-	-	-	-	-	-	-		-
Sta 6 - Day	-	-	-	_	-	-	-	_	- 🦫		k Sign ⊷
Sta 6 - Night	-	-	-	-	-	-	-	-	= `}r -√a		∛ t -
Total Day SD	-	-	-	-	-	-	-	-	**************************************		
Total Night	-	-	-	-	-	-	-	-	- "		g.: -
SD					1	5.90				N.	ra

100 200		i i i		5 mm Ji	11y 76	, y.	Sept	76	, a , a , b	10 v 76			77	May		
Beach	Beri	16.30	1.0	No.	<u>W</u>	<u> E</u>	No	Wt	<u>No</u>	W	<u> </u>	No	Wt	No	Wt	N
Sta 2	- 1	Day :	1. July 18	ી ફ ું – ્				े			• ,47		- ,		<i>9</i> ≥	
Sta 2	*/ = (35/e €	Nigh	t 🗼	47 Y				, , · ·	1	10.0	0	•	-	• .	•	
Sta 3		Day	944 S) 1 4 4 6 		-				_		•	
Bta 3	. rities	_	A	-	1867		•		- ⁷ / ₂ (q →				-	· • • • • • • • • • • • • • • • • • • •	-	***
1 .M. 5	1/2	Day			1						4 (-	1	9.00	
sta 5	3 4	Nigh	t 💮	ું 1	20.0	0	-		- y		-	N_	-,	i ka⊒a	-	
ita 9	101	Dev	(4)			x	_ *									*
Sta 9		Nigh	t į	*		-		1 -			-	-			V .	
Sta 1		ne e		31/2					$\tau_{\alpha}V^{A}$							3
ita, 1	0 - 1	Nigh	t °		43		-		∵'`> _			_	_			
ita 1		ب انت		5,600	Say (Sa				.y., 192							
			t	<i>6.8</i> _	2.7	.		` _ .			-	- T	-		:	
and the second second	11 21 74 4							P	. Va . 1/2	100			26. A. M	· · · · · · · · · · · · · · · · · · ·		
rotal SD 👙	Day	ğ.,		righ.							To Great			1	9.00	
Total	Nig	ht 🤚	4.9	1	20.0	0	ý - ∤		ا ر بار	10.0	0	•	-	- 1	*	

Beach Seine No Wt No Wt No Wt No Wt No Wt No Sta 2 - Night	777
Sta 2 - Night	Wt
Sta 2 - Night	- y - 1 1
Sta 3 - Day /	, to the second
Sta 3 - Day / B	ografia
To Sta 3 % Night & Control of the Co	
* Sta 5 / Day 2 31.50	37.8° ₩ .
# Sta 5 6 Day 2 31.50	5 / • .
25. DHE 19. 26.7,DHY 16.26.5,22.6.26.1。21.5.20 1.26.66.26.20.20.20.20.20.20.20.20.20.20.20.20.20.	Alternative Contraction
A CONTRACTOR OF THE PROPERTY O	
Bell & Day	
Sta 9 /- Might 25.00	
Sta 10 - Day	
Sta 10 - Night wo	
	Q24 5 >
Sta 11:- Day	
Sta 11 - Wight	×
Total Day 2 31.50 - 4 4 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	
8D (2.120)	
X (************************************	
8D (6.782)	W. W. Taker

J: <u>N</u>c

	Ju	ly 76	Sep	t 76	Nov	76	Marc	h 77	May	77	Ju
Beach Seine	No		No	Wt	No	Wt	No	Wt	No	Wt	No
Sta 2 - Day	_	_	-	-	_	_	_	-	_	_	_
Sta 2 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 3 - Day	-	_	_	_	_	-	-	-	_	_	_
Sta 3 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 5 - Day	_	-	-	_	-	-	-	_	-	_	_
sta 5 - Night	117	42.13	-	-	-	-	-	-	-	-	-
Sta 9 - Day	_	-	-	-	-	-	-	-	-	-	_
ta 9 - Night	4	36.25	-	-	-	-	-	-	-	-	-
ita 10 - Day	-	-	-	-	-	-	-	_	-	-	_
Sta 10 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 11 - Day	-	-	-	-	-	-	-	-	-	-	-
Sta 11 - Night	-	-	-	-	-	-	-	-	-	-	-
Total Day	-	-	-	-	-	-	-	-	-	-	-
Notal Night	121	40.89 (7.187)	-	-	-	-	-	-	-	-	-

	July	76	Sep	t 76	Nov	76	Mar	ch 77	May	77	Jul
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No
Sta 2 - Day	_	-	_	_	_	_	_	_	-	_	_
Sta 2 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 3 - Day	-	_	-	_	-	_	_	-	_	_	_
Sta 3 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 5 - Day	-	-	_	-	-	_	-	_	_	-	_
Sta 5 - Night	4 1:	20.00	-	-	-	-	-	-	-	-	-
Sta 9 - Day	-	-	_	_	-	_	_	_	_	_	_
STa 9 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 10 - Day	-	-	- '	-	-	-	-	-	-	-	-
STa 10 - Night	1 1	32.00	-	-	-	-	-	-	-	-	-
Sta 11 - Day	-	-	-	-	_	-	-	-	_	_	-
Sta 11 - Night	-	-	-	-	-	-	-	-	-	-	-
Total Day SD	-	-	-	~	-	-	-	-	~	-	-
Total Night	5 1:	22.40	-	-	-	-	-	-	-	-	-

	Ju:	ly 76	Sep	t 76	Nov	76	Marc	h 77	May	77	J
Beach Seine	<u>No</u>	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No
Sta 2 - Day	-	-	-	-	-	-	-	-	-	-	-
Sta 2 - Night	-	-	1 2	35.00	-	-	-	-	-	-	-
Sta 3 - Day	-	-	_	-	-	-	-	_	-	_	_
Sta 3 - Night	-	-	1 1	95.00	-	-	-	-	-	-	-
Sta 5 - Day	1	114.00	-	-	-	-	-	-	- -	_	-
STa 5 - Night	1	172.00	-	-	-	-	-	-	-	-	-
Sta 9 - Day	-	-	-	-	-	-	-	-	_	-	-
Sta 9 - Night	-	-	-	-	-	-	-	-	1 18	85.00	-
Sta 10 - Day	-	-	-	-	-	-	-	-	-	-	_
Sta 10 - Night	-	-	-	-	-	-	-	-	~	-	-
Sta 11 - Day	-	-	-	-	-	-	-	-	-	-	-
Sta 11 - Night	-	-	-	-	-	-	-	-	-	-	-
Total Day SD	1	114.00	-	-	-	-	-	-	-	-	•
Total Night	1	172.00		15.00 28.284)	-	-	-	-	1 1	85.00	-

Species: Largescale Sucker Catostomus macrocheilus (cont.)

					•						
Size Class 350> mm	•	ly 76	Se	pt 76	ท์ c	v 76	Mar	ch 77	Ma	y 7 7	Ju.
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No
Sta 2 - Day	-	-	-	_	_	-		_	. .	-	_
Sta 2 - Night	-	~	11	1175	1	600	3	563		, -	-
Sta 3 - Day	2	563	10	1175	_	-	-		_	_	_
Sta 3 - Night	-	-	1	717	5	669	-	-	-	-	1
Sta 5 - Day	-	-	_	-	_	-	4	1141	3	889	-
Sta 5 - Night	'-	-	2	907	-	-	1	1283	-		-
Sta 9 - Day	-	-	-	-	-	-	-	-	_	-	-
Sta 9 - Night	-	-	1	916	-	-	1	870		-	-
Sta 10 - Day	· -	-	-	-	-	-	-	-	_	-	-
Sta 10 - Night	2	652	•-	-	-	-	1	1654	-	-	-
Sta 11 - Day	-	-	8	-	1	1440	4	1041	-	-	-
Sta 11 - Night	-	-	1	1129	-	-	-	-	-	-	7
Total Day	2	563	18	1175	1	1440	8	1091	3	889	-
S D		(26.870)	(431.540)			(200.100)	(1	39.170)	
Total Night	2	632	16	924	6	657	5	1125	-	•	8
SD		(33.930)	(207.160)	(175.630)	(370.300)			(3.

Species: Largescale Sucker Catostomus macrocheilus (cont.)

	July	76	Sep	t 76	No	v 76	Marc	h 77	Ma	y 77	Ju
Fyke Net	No		· No	Wt	No		No	Wt	No		<u>No</u>
Sta A - Day	-	_	_	-	_	_	-	-	_	-	_
Sta A - Night	-	-	-	-	-	-	-	-	-	-	-
Sta B - Day	-	-	-	_	-	_	_	_	1	1059	_
Sta B - Night	-	~	-	-	1	527	-	-	-	-	-
Sta C - Day	-	_	-	_	_	_	_	_	-	_	_
Sta C - Night	-	-	-	-	-	-	-	-	-	-	-
Sta D - Day	-	-	-	-	-	_	_	_	_	-	-
Sta D - Night	-	-	-	-	-	-	-	-	-	-	-
Sta E - Day	-	-	_	_	-	_	-	-	_	_	_
Sta E - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 6 - Day	-	-	-	_	-	_	-	_	-	_	_
Sta 6 - Night	-	-	-	-	-	-	-	-	-	-	-
Total Day	-	_	-	_	-	-	-	-	1	1059	-
SD											
Total Night	•	-	-	-	1	527	-	-	-	-	-

Species Threespine Stickleback Gasterosteus aculeatus

Size Class C-25 m						3
	July 76	Sept 76	Nov 76	March 77	May 77	July 💉
Beach Seine	No Wt	No Wt	No Wt	No Wt	No Wt	No
Sta 2 - Day						-
Sta 2 - Night						- :
Sta 3 - Day						4 .;
Sta 3 - Night						- !
Sta 5 - Day						-
Sta 5 - Night						-
Sta 9 - Day						-
Sta 9 - Night						-
Sta 10 - Day						_
Sta 10 - Night						-
Sta 11 - Day		٠ .				-
Sta 11 - Night						-
Total Day						4
S D						
		•				-
Sta 10 - Night Sta 11 - Day Sta 11 - Night Total Day						- - - 4

209

Species Threespine Stickleback Gasterosteus aculeatus (cont.)

Size Class 26-50										
	July	76 Se	pt 76	No	v 76	Mar	ch 77	May	7 7	Jul
Beach Seine	No	Wt No	Wt	No	Wt	No	Wt	No	Wt	No
Sta 2 - Day	-	- 1	1.15	1	1.00	_	-	_	-	-
Sta 2 - Night	7	.64 -	•	2	1.10	3	1.00	-	-	-
Sta 3 - Day	155	.67 '352	1.33	_	_	_	_	_	_	6
Sta 3 - Night	3	.59 1	1.60	30	1.31	4	1.50	-	-	-
Sta 5 - Day	2	.83 1	1.10	1	1.10	6	100	_	_	_
Sta 5 - Night	6	.89 5	1.28	1	1.20	4	1.08	-	-	1
Sta 9 - Day	-		-	_	_	_	-	-	_	-
Sta 9 - Night	7 1	. 37 1	.80	-	-	4	1.00	-	-	1
Sta 10 - Day	2 1	.10 -	_	-	_	_	_	_	_	1
Sta 10 - Night	1	.80 -	-	1	1.50	1	1.00	-	-	-
Sta 11 - Day	1	.95 -	_	1	1.05	-	-	-	_	-
Sta 11 - Night	2	.70 22	1.23	4	1.19	-	-	-	-	1
Total Day		.68 354 .043)	1.33	3	1.05	6	1.00	-	-	7
Total Night	26	.90 29 .307	1.24 (1.240)	38	1.29	16	1.15 (.184)	-	-	3

Species Threespine Stickleback Gasterosteus aculeatus (cont.)

Size Class 26-50 mm	<u>n</u>										
	Ju.	ly 76	Se	pt 76	No	v 76	Mar	ch 77	May	77	Jul.
Pyko Net	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No
Sta A - Day	-	-	-	-	-	-	_	-	-	_	_
Sta A - Night	5	.40	-	-	-	-	-	-	-	-	~
Sta B - Day	-	-	_	-	_	_	_	_	_	_	_
Sta B - Night	-	-	-	-	-	-	-	-	-	-	-
Sta C - Day	_	-	-	_	-	-	-	-	-	-	_
Sta C - Night	2	.39	-	-	-	-	-	-	-	-	-
Sta D - Day	-	-	1 2	.33	_	_	6	1.17	٠ ـ	_	6
Sta D - Night	3	.75	2	.78	-	-	-	-	-	-	-
Sta E - Day	1	.48	-	-	_	_	_	-	-	-	3
Sta E - Night	7	.58	2	2.28	-	-	-	-	-	-	3
Sta 6 - Day	_	-	-	-	1	.90	-	_	-	_	1
Sta 6 - Night	-	-	-	-	-	-	-	-	-	-	-
Total Day	1	.48	1	.33	1	.90	6	1.17 (.150)	-	-	10
Total Night SD	17	.53 (.152	4	1.53 (.866)	-	-	-	•	-	-	3

211

Species Threespine Stickleback Gasterosteus aculeatus (cont.)

Size Class 51-75		ly 76	Se	t 76	No	v 76	Mar	ch 77	Ma	y 77	Jul	У
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	-
Sta 2 - Day	1	3.00	1	1.85	_	_	-	-	24	2.84	1	
Sta 2 - Night	1	2.63	-	-	3	1.97	7	2.43	3	2.63	1	4.0
Sta 3 - Day	1	3.35	-	-	1	1.30	-	_	1	2.10	2	
Sta 3 - Night	-	-	-	-	8	1.76	8	2.50	4	2.73	3	
Sta 5 - Day	1	2.63	_	_	2	1.50	12	1.72	_	-	6	
Sta 5 - Night	1	2.25	1	1.60	2	1.70	7	1.69	6	2.72	10	٠.
Sta 9 - Day	6	3.25	-	-	-	-	11	2.00	_	-	5	ä
Sta 9 - Night	34	3.47	-	-	-	-	-	-	-	-	9	
Sta 10 - Day	3	2.91	-	-	-	-	2	2.50	-	-	5	
Sta 10 - Nigh	5	3.65	-	-	-	-	3	2.00	-	-	-	
Sta 11 - Day	_	-	-	-	_	-	2	2.00	3	3.13	1	٠.
Sta 11 - Nigh'	-	-	-	-	5	1.53	1	2.00	1	2.10	-	
Total Day	12	3.10	1	1.85	3	1.43	27	1.91	28	2.84	20	
SD		(.233)				(.166)		(.240)		(.239)		
Total Night SD	41	3.44 (.265)	1	1.60	18	1.72 (.197)	26	2.19 (.324)	14	2.66 (.153)	23	٠.

212

Species Threespine Stickleback Gasterosteus aculeatus (cont.)

Size Class 51-75	mm										
	Ju	ly 76	Sep	t 76	No	v 76	Mar	ch 77	May	77	Jul.
Fyke Net	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No
Sta A - Day	1	3.25	-	-	-	-	_	-	1	2.70	5
Sta A - Night	-	-	-	-	-	-	-	-	2	3.05	4
Sta B - Day	1	3.14	_	-	-		_	-	2	2.75	4
Sta B - Night	-	-	-	-	-	-	-	-	-	-	2
Sta C - Day	2	3.95	-	-	-	_	1	2.45	1	1.70	1
Sta C - Night	2	3.67	-	-	-	-	-	-	1	2.50	-
Sta D - Day	3	3.29	-	-	_	-	10	1.58	1	2.00	25
Sta D - Night	5	3.32	-	-	-	-	-	-	3	2.83	17
Sta E - Day	1	3.60	-	-	-	-	-	-	2	3.38	9
Sta E - Night	3	3.20	-	-	-	-	-	-	3	3.40	1
Sta 6 - Day	_	-	-	-	1	2.10	-	-	-	-	-
Sta 6 - Night	-	-	-	-	-	-	-	-	-	-	-
Total Day	8	3.08	-	-	1	2.10	10	1.58	7	2.67	44
SD		(1.739)						(.230)		(.613)	
Total Night	10	3.35 (.246)	-	-	-	-	1	2.45	9	3.03 (.342)	24
SD		(.246)								(.342)	

Species Threespine Stickleback Gasterosteus aculeatus (cont.)

Size Class 76-10	July 76		Sept 76		Nov 76		March 77		May 77		July	
Beach Seine	No		No	Wt	No	Wt	No	Wt	No	Wt	No	
Sta 2 - Day	-	-	-	-	-	-	-	_	-	-	_	
Sta 2 - Night	-	-	-	-	-	-	-	-	-	-	-	
Sta 3 - Day	-	-	-	-	-	-	-	-	-	-	1	6.
Sta 3 - Night	-	-	-	-	-	-	-	-		-	-	
Sta 5 - Day	-	-	-	-	-	-	-	-	_	_	_	
Sta 5 - Night	-	-	-	-	-	-	-	-	-	-	-	
Sta 9 - Day	-	-	-	-	-	-	-	-	-	-	-	
Sta 9 - Night	-	-	-	-	-	-	-	-	-	-	1	4
Sta 10 - Day	-	-	-	-	-	-	-	-	-	~	-	
Sta 10 - Night	-	-	-	-	-	-	-	-	-	-	-	
Sta 11 - Day	-	-	-	· 🕳	-	_	-	_	_	_	_	
Sta 11 - Night	-	-	-	-	-	-	-	-	-	-	-	
Total Day SD	-	-	-	-	-	-	-	-	-	-	1	6
Total Night	-	-	-	-	-	-	-	-	-	-	1	4

Size Class 76-10									
Pyke Net	July No	/ 76 Wt	Sep ¹ No	t 76 <u>Wt</u>	No.	76 Wt	March 7		May 77
Sta A - Day	_	-	-	-	<u>.</u>	-	1.0%		
Sta A - Night	-	-	-			•		•	- 1
Sta B - Day	_	_	_	_				2	
Sta B - Night	-	-	-	•	- 1	- ⁴		-	
Sta C - Day	-	-	-	-		_	•		
Sta C - Night	-	-	-	-	-	-	- 15 ···		
Sta D - Day	_	-	-						
Sta D - Night	-	-	-	-	•	-		-	•
Sta E - Day	-	-	_	• • • • • • • • • • • • • • • • • • •	-		,	_	
Sta E - Night	-	-	-	-	-		v − ,		•
Sta 6 - Day	_	_	-		· -				
Sta 6 - Night	_	_	_				10 <u>~</u> - 1, 111.		

Species Staghorn Sculpin Leptocottus armatus

Bize Class 26-50 mm		
Beach Seine Wo	Sept 76 Nov 76 March 77	May 77 Ju
Sta 2 - Day		No Wt No
Sta 2 - Night -	1 .50	
Mta 3 = Day	- 3 .76	
Sta 3 - Night	1 1.00	2 - 11
sta 5 - Day	5 1.08	1 1.30
Sta 5 - Night		
Sta 9 - Day		
Sta 9 - Night	1 2.00	
Sta 10 - Day Sta 10 - Wight -	25 .92 2	
AND THE STATE OF T		
Sta 11 - Day Sta 11 - Might	1. 1.00	1 1.00 6
Total Day:		
SD (44 .854 (.466)	1 1.30 5
Total Night	7 (.548)	1 1.00 18

Species: Staghorn Sculpin Leptocottus armatus. (cont.)

Size Class 26-50 mm	July 76	Sept 76	Nov 76	March 77	May 77	July
The Rev No.	ration and	No W	NO WE	1 1.43		
Sta A - Night (C.)						
Sta S - Night Sta C - Day						3
Sta C - Night Sta D - Day						2 1.
Sta B - Night Sta B - Day Sta B - Night				12 .70		9 1. 6 1.
Sta 6 - Day sta 6 - Wight						1 1.
Total Day				2 1.07 2 (.516)	""的"说法"的"	15 1
Total Right #4				1 1.00		16 (.
			·····································	经 种的的例	and the second of the second o	AP 1. T

Species: Staghorn Sculpin Leptocottus armatus (cont.)

Size Class 51-75		y 76	Sep	t 76	Nov	76	Mar	ch 77	Ma	y 77	Jul
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No		No
Sta 2 - Day	-	-	-	-	-	-	-	-	-	_	_
Sta 2 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 3 - Day	-	-	-	_	-	-	-	_	_	_	_
Sta 3 - Night	-	-	-	-	-	-	-	-	-	-	9
Sta 5 - Day	-	' -	-	-	_	-	-	-	2	3.50	_
Sta 5 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 9 - Day	-	-	_	-	-	-	_	_	-	-	_
Sta 9 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 10 - Day	-	-	-	-	-	-	-	-	-	-	_
Sta 10 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 11 - Day	-	-	-	-	-	-	2	2.00	-	-	-
Sta 11 - Night	-	-	-	-	-	-	-	-	5	2.96	8
Total Day SD	-	-	-	-	-	-	2	2.00	2	3.50 (.140)	-
Total Night SD	-	-	-	-	-	-	-	-	5	2.96 (1.000)	17

Species: Staghorn Sculpin Leptocottus armatus (cont.)

Size Class 51-75	mm July	76	Ç a.	pt 76	Nov	76	Marc	h 77	Ma	y 77	Jui
Fyke Net	No		No.	Wt.	No	Wt	No	WE	No No	-	No.
• • • • • • • • • • • • • • • • • • • •							<u> </u>				
Sta A - Day	-	-	-	-	-	-	-	_	-	_	_
Sta A - Night	-	~	-	-	-	-	-	-	-	-	-
Sta B - Day	-	-	1	4.70	-	-	-	-	1	4.00	-
Sta B - Night	-	-	-	-	-	-	_	-	1	1.00	-
Sta C - Day	-	-	-	-	-	-	-	-	-	-	-
Sta C - Night	-	-	-	-	-	-	-	-	-	-	-
Sta D - Day	-	-	-	-	-	-	-	-	-	-	-
Sta D ~ Night	-	-	-	-	-	-	-	-	-	-	-
Sta E - Day	-	-	-	-	-	-	-	-	-	-	3
Sta E - Night	-	-	-	-	-	-	-	-	-	-	4
Sta 6 - Day	-	-	-	-	-	-	-	-	-	-	-
Sta 6 - Night	-	-	-	-	-	-	-	-	-	-	-
Total Day	-	-	1	4.70	-	-	-	-	1	4.00	3
Total Night	-	-	-	-	-	-	-	-	1	1.00	4

Species: Stayhorn Sculpin Leptocottus armatus (cont.)

		y 76	Sej	pt 76		76		h 77		y 77	Ju:	ly
Beach Seine	No	Wt	No	Wt	No	Wt	NO	Wt	No	Wt	No	
ta 2 - Day	-	-	-	-	-	-	-	_	_	-	_	
ta 2 - Night	-	-	-	-		-	-	-	-	-	-	
Sta 3 - Day	-	_	-	-	-	-	-	-	-	-	-	
ta 3 - Night	-	-	-	-	-	-		-	-	-	1	13
ta 5 - Day	-	-	1	5.80	-	_	-	-	2	6.40	3	(
ta 5 - Night	-	-	-	-	-	-	-	-	-	-	-	
ita 9 - Day	-	-	-	-	-	-	-	-	-	-	4	1
ita 9 - Night	-	-	-	-	-	-	-	-	-	-	1	1
ta 10 - Day	-	-	_	-	_	-	-	-	-	-	-	
Sta 10 - Night	-	-	-	-	-	-	-	-	-	-	-	
sta 11 - Day	-	-	-	-	_	_	-	-	-	-	-	
Sta 11 - Day	-	-	-	-	-	-	-	-	-	-	10	1:
otal Day	-	-	1	5.80	-	-	-	-	2	6.40 (.280)	7	1
Notal Night	-	-	-	-	-	-	-	-	-	-	12	1 (
						*****	***					•
yke Net												
ta B - Day	-	-	-	-	-	-	-	-	-	-	-	
ta B - Night	-	-	1	10.00	-	-	-	-	-	-	-	
otal Night	-	_	1	10.00	_	-	_	_	-	-	_	
-												

Species: Staghorn Sculpin Leptocottus armatus (cont.)

Size Class 101-12	5 mm									
	July 76	Se	ept 76	No	ov 76	Marc	h 77	May	77	July 🦨
Beach Seine	No W	t No	Wt	No	Wt	No	Wt	No	Wt	<u>No</u>
Sta 2 - Day	-		-	_	-	-	-	-	-	- 1
Sta 2 - Night	-		-	1	13.00	-	-	-	-	1 2⊬ λ
Sta 3 - Day	-		_	-	-	-	_	-		-
Sta 3 - Night	-	- -	-	2	19.00	-	-	-	-	2 25.
Sta 5 - Day	-		-	_	_	-	-	-	_	1 19.
Sta 5 - Night	-		-	-	-	-	-	-	-	-
Sta 9 - Day	-		-	-	_	-	-	-	-	3 20.
Sta 9 - Night	•		-	-	-	-	-	-	-	-
Sta 10 - Day	-		-	-	-	_		-	-	-
Sta 10 - Night	-		-	3	20.33		-	-	-	-
Sta 11 - Day	-		-	-	-	-	-	-	-	2 18.
Sta 11 - Night	-	- 1	22.00	10	16.30	-	-	-	-	5 2 C ,
Total Day	-		-	-	-	-	-	-	-	6 24. (5).
Total Night SD	-	- 1	22.00	16	17.19 (1.200)	-	~	-	-	8 22 (3).

Species: Staghorn Sculpin Leptocottus armatus (cont.)

	Jul	y 76	Se	pt 76	No	ov 76	Marc	h 77	May	77	Sul
Fyke Net	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No
Sta A - Day	-	_	-	-	_	-	_	_	_	_	-
Sta A - Night	-	-	1	12.00	2	13.50	-	-	-	-	-
Sta B - Day	_	-	_	-	_	-	-	-	-	-	-
Sta B - Night	-	-	-	-	-	-	-	-	-	-	-
Sta C - Day	-	-	-	-	_	-	-	-	-	-	_
Sta C - Night	-	-	-	-	1	25.00	-	-	-	-	-
Sta D - Day	-	-	_	-	1	19.00	-	-	_	-	-
Sta D - Night	-	-	-	-	-	-	-	-	-	-	-
Sta E - Day	-	-	-	-	-	-	-	-	-	-	_
Sta E - Night	-	-	-	-	1	16.00	-	-	-	-	-
Sta 6 - Day	-	_	_	_	_	-	-	_	_	_	-
Sta 6 - Night	-	-	-	-	-	-	-	-	-	-	-
Total Day SD	-	-	-	-	1	19.00	-	-	-	-	-
Total Night	-	-	1	12.00	4	17.00	-	-	•	-	-

Species: Staghorn Sculpin Leptocottus armatus (cont.)

Size Class 126-150	O mem										
	July	76	Sept	t 76	No	ov 76	Marc	h 77	May	77	Jul
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No
Sta 2 - Day	-	-	-	-	-	-	_	-	-	-	-
Sta 2 - Night	-	-	-	-	-	-	-	-	-	-	•
Sta 3 - Day	-	-	-	-	_	-	-	_	-	-	-
Sta 3 - Night	-	-	-	-	1	34.00	-	-	-	-	1
Sta 5 - Day	-	-	-	-	-	_	_	_	_	-	-
Sta 5 - Night	-	- ,	-	-	-	-	-	-	-	-	-
Sta 9 - Day	-	-	-	-	_	-	-	-	-	-	-
Sta 9 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 10 - Day	-	-	-	-	_	-	-	-	-	-	-
Sta 10 - Night	-	-	-	-	1	28.00	-	-	-	-	1 .
Sta 11 - Day	-	-	-	-	-	-	-	-	-	-	-
Sta 11 - Night	-	-	-	-	1	31.00	-	-	-	-	1 .
Total Day	-	-	-	-	-	-	-	-	-	-	-
Total Night SD	-	-	-	•	3	31.00	-	-	-	-	3 (

Species: Staghorn Sculpin Leptocottus armatus (cont.)

	Jul	y 76	Sep	t 76	No	ov 76	Marc	h 77	May	77	Jul
Pyke Net	No		No	Wt	No	Wt	No	Wt	No	Wt	No
Sta A - Day	-	-	-	_	_	_	-	-	_	-	_
Sta A - Night	-	-	-	-	1	31.00	-	-	-	-	-
Sta B - Day	-	_	-	-	1	30.10	-	-	-	_	-
Sta B - Night	-	-	-	-	-	-	-	-	-	-	-
Sta C - Day	-	-	-	_	_	_	-	-	-	-	_
Sta C - Night	-	-	-	-	1	29.00	-	-	-	-	-
Sta D - Day	-	-	-	-	1	29.00	-	-	-	-	-
Sta D - Night	-	-	-	-	-	-	-	-	-	-	-
Sta E - Day	-	-	_	-	-	-	-	-	-	_	-
Sta E - Night	-	-	-	-	1	26.00	-	-	-	-	-
Sta 6 - Day	-	-	-	-	-	-	-	-	-	-	-
Sta 6 - Night	-	-	-	-	-	-	-	-	-	-	-
Total Day	-	-	-	-	2	29.55	-	-	_	-	-
SD						(.778)					
Total Night	-	-	-	-	3	28.60 (3.606)	-	-	-	-	-

	Jul	y 76	Sep	t 76	Nov	76	Marc	h 77	May	, 77	July
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No
Sta 10 - Day	_	_	_	-	-	_	_	_	_	_	_
Sta 10 - Night	-	-	-	-	-	-	-	-	-	-	1 11
St 11 - Day	_	_	-	-	_	-	_	_	_	_	_
Sta 11 - Night	-	-	-	-	-	-	-	-	-	-	1 10
Total Night	-	•	-	-	-	-	-	-	-	-	2 10 (1
Pyke Net					•						
Sta 6 - Day	-	-	- <i>'</i>	_	1 10	6.00	_	_	-	_	-
Sta 6 - Night	-	-	-	-	-	-	-	-	-	-	-
Total Day	-	_	_	-	1 1	.06.00	-	_	_	_	_

Species: Prickly Sculpin Cottus asper

Size Class 26-50 mm	ı										
	July	y 76	Sep	t 76	Nov	76	March	n 77	Ma	y 77	Jul:
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No
Sta 2 - Day	_	_	_	_	_	_					
Sta 2 - Night	_	-	_	-	_	_	-	_	-	-	-
Sta 3 - Day	3	.57	2	.76	-	-	-	-	3	1.03	-
Sta 3 - Night	-	-	-	-	-	-	-	-	14	1.11	
Sta 5 ~ Day	_	_	-	-	-	_	_	_	1	1.50	_
Sta 5 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 9 - Day	_	_	_	-	_	_	_	_	1	1.50	-
Sta 9 - Night	-	-	-	-	-	-	-	-	-	-	
Sta 10 - Day	_	_	_	_	_	_	_	_	1	1.70	_
Sta 10 - Night	-	-	-	-	-	-	-	-	-	-	_
Sta 11 - Day	_	_								1 50	
	-	-	_	-	-	-	-	-	5	1.59	-
Sta 11 - Night	-	•	-	-	-	-	-	-	_	-	-
Total Day	3	.57	2	.76	-	_	-	~	10	1.42	-
SD		(.140)		(.035)						(.335)	
Total Night	-	-	-	-	-	-	-	-	15	1.14	
					•	*****	***			(.258)	
Fyke Net											
Sta D - Day	-	-	1	.50	-	-	-	-	-	-	~
Total Day	-	-	1	.50	-	-	-	-	-	-	-

Species: Prickly Sculpin Cottus asper (cont.)

Size Class 51-75 m	nm								
	July 76	Sep	t 76	Nov	76	March	1 77	May 77	Ju.
Beach Seine ·	No W	t <u>No</u>	Wt	No	Wt	No	Wt	No Wt	No
Sta 2 - Day	-		-	-	-	-	-	1 2.20	-
Sta 2 - Night	-		-	-	-	-	-		-
Sta 3 - Day	-		-	-	-	-	-	3 4.17	-
Sta 3 - Night	-		-	-	-	-	-	2 2.25	_
Sta 5 - Day	-		_	-	-	-	-		-
Sta 5 - Night	-		-	-	-	-	-		-
Sta 9 - Day	-		-	-	-	-	-	5 3.04	-
Sta 9 - Night	-		-	-	-	-	-		-
Sta 10 - Day	-		-	_	-	-	-	39 4.16	-
Sta 10 - Night	-		-	-	-	-	-	1 3.10	-
Sta 11 - Day	-		-	-	-	-	-	14 4.01	-
Sta 11 - Night	-		-	-	-	-	-		-
Total Day SD	-		-	-	-	-	-	62 3.93 (1.332)	-
Total Night SD	-		-	-	-	-	-	3 2.53 (.602	~
				,	*****	***		(.002	
Pyke Net									
Sta C - Day	-		-	-	-	-	-	2 5.45	-
Sta C - Night	1 1.63	-	-		-	-	-	1 5.10	-
Total Day SD	-		-	-	-	-	-	2 5.45 (.070)	
Total Night	1 1.63	-	~	-	-	-	-	1 5.10	-

Species: Prickly Sculpin Cottus asper (cont.)

Size Class 76-10	O mm										
	Ju	ly 76	Se	pt 76	No	v 76	Marc	h 77		ay 77	Jul
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No
Sta 10 - Day	-	-	-	-	-	-	-	-	5	7.88	_
Sta 10 - Night	-	-	-	-	-	-	~	-	-	-	-
Total Day SD	-	-	-	-	-	-	~	-	5	7.88 (.850)	-
Size Class 101-1	25 mm										
Beach Seine											
Sta 10 - Day	-	-	-	-	_	-	-	-	_	-	_
Sta 10 - Night	1	34.00	-	-	•	-	-	-	-	-	-
Total Night	1	34.00	-	-	-	-	-	-	-	-	-
Pyke Net											
Sta E - Day	1	28.00	1		_	-	-	-	_	_	-
Sta E - Night	-		1	28.00	-	-	-	-	-	-	-
Total Day	-	-	1		-	-	_	-	_	-	_
Total Night	1	28.00	1	28.00	-	-	-	-	-	-	-
Size Class 126-1	50 mm										
Pyke Net											
Sta A - Day	-	-	1	47.00	1	48.00	-	-	-	-	_
Sta A - Night	-	•	-	-	-	-	-	-	-	-	-
Sta D - Day	-	-	-	-	-	-	-	-	-	-	-
Sta D - Night	-	-	1	41.00	-	-	-	-	-	_	-

Species: Prickly Sculpin Cottus asper (cont.)

	Ju	ly 76	Se	pt 76	N	ov 76	Marc	h 77	May	77	Ju.
Fyke Net	No	Wt	No	ME	No	Wt	No	Wt	No	Wt	No
Sta 6 - Day	-	-	-	_	_	-	-	-	•	-	_
Sta 6 - Night	-	-	-	-	2	43.50	•	-	•	•	-
Total Day SD	-	-	1	47.00	1	48.00	•	•	•	-	-
Total Night	-	-	1	41.00	2	43.50 (2.120)	•		• (1)		-
Size Class 151-1	75 mm							€ age		(7)	
Beach Seine											
Sta 3 - Day	1	94.00	_	-	-		_				_
Sta 3 - Night	-	-	-		-	•		• `	•		• -
Total Day	1	94.00	-	-	-	-			•		-
Fyke Net			•			*****		· ·	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	e protes	
Sta A - Day	-	-	_	-	1	63.00		-		_	_
Sta A - Night	-	-	-	-	•	-	-	-	-	-	-
Sta D - Day	1	81.00	-	_	-	-	_				_
Sta D - Night	-	-	-	-	-	•	•				-
Sta E ~ Day	-	_	_	-	_	_	_	• 4		21 - A - A - A - A - A - A - A - A - A - A	_
Sta E - Night	-	-	1	35.50	-	-	-	•		-	_

	151-175 mm	uly 76	Sept 76	Nov 76	March 77	
Sta 6 - De	y	WE N	o m	No Nt	No W	
Sta 6 - Ni Total Day	Reservation of the	81.00	2 63.00	3 70.33 1 63.00		
SD Total Night		and a state of	3 53.83 (16.158)	3 70.33 (12.060)		
Bire Clars	176-200 пт					
Pyke Met Ctass, - Sta 6 - Da					· · · · · · · · · · · · · · · · · · ·	
Sta 6 - Hi	ght -		1 1111:00			
Total Might Size Class			1 111.00			
Tyke Net		enti erazin edak ele Olaska eta eta eta eta eta eta eta eta eta et				
sta D - Da Sta D - Ni		31.00				
Total Day		31.00				Anna L

	Species: Coho Sala	=	ichus kisutc	h		e de la companya de
	Bize Class 26-50 Beach Seine	July 76 No Wt		6 Nov 7	h 77 Wt No	May 77
	Sta 9 - Day Sta 9 - Hight					1 30.00
	Total Days					1 30.00
	Size Class 51-75					
	Seach Seine					
	Sta 3 - Day Sta 3 - Wight					1 5.00
 3	Total Day					1 5.00
0,	Byke Met					
	Sta C - Day Sta 3 - Night					1 3.00
	Total Day					1 3.00
	Bira Class 76-100	-				
	Beach Seine					
	Sta 5 - Day Sta 5 - Night					7,00
	Total Right					1 7.00

Species: Coho Salmon no physical Fisuter (cont.)

Size Class 76-100 m											
	July	76	Sept	76	Nov	76	Marc	h 77	Ma	y 77	Jul:
Fyke Net	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No
Sta B - Day	_	_	-	_	_	_	_	_	_	_	1
Sta B - Night	_	-	_	-	_	_	_	_	_	_	
bea b migne		-	_	_	_	-	-	-	-	-	-
Total Day	-	-	-	-	-	-	_	-	-	-	1
Size Class 102-125	mm										
Beach Seine											
	,										
Sta 5 - Day	_	_	_	_	_	_	_	_	_	_	_
Sta 5 - Night	_	_						-	_	15 00	_
sca 5 - Night	_	-	-	-	-	-	-	-	2	15.00	-
Total Night	-	-	-	~	-	~	_	-	2	15.00	-
					•	*****	***				
Pyke Net											
Eta C - Day	-	-	_	_	_	-	_	_	-	_	1
Sta C - Night	_	_	_	_	_	_	_	_	-	_	-
Total Day	_		_	_	_		_				1
local hay	-	-	-	-	-	-	-	-	-	-	7
Size Class 126-150	mm										
Beach Seine											
Sta 2 - Day	-	-	-	-	-	-	-	-	_	_	-
Sta 2 - Night	-	_	-	_	-	-	-	-	6	21.00	_
									_		
Sta 3 - Day	_		_	_	_	_	_	_	1	30.00	_
	_	_	_	_	_	-	-	-	_		-
Sta 3 - Night	-	-	-	-	-	-	-	-	7	21.57	-

Species: Coho Salmon Oncorhynchus kisutch (cont.)

Size Class 126-1		ont.	_								
	-	76	_	t 76	Nov			h 77		ay 77	Jul
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	NO .
Sta 5 - Day	_	-	-	-	_	_	-	-	2	25.00	_
Sta 5 - Night	-	-	-	-	-	-	-	-	6	23.67	-
Sta 9 - Day	-	-	-	-	-	-	-	-	_		-
Sta 9 - Night	-	-	-	-	-	-	-	-	3	28.67	-
Sta 10 - Day	-	-	-	_	_	-	-	_	_	-	-
Sta 10 - Night	-	-	-	-	-	-	-	-	3	24.00	-
Sta 11 - Day	-	-	-	-	-	-	-	-	1	28.00	-
Sta 11 - Night	-	-	-	-	-	-	-	-	2	25.50	-
Total Day SD	-	-	-		-	-	-	-	4	27.00 (2.449)	-
Total Night	-	-	-	-	-	-	-	-	27	22.58 (10.470)	-
					,	*****	***			(2000)	
Fyke Net											
Sta D - Day	-	-	-	-	-	-	-	-	-	-	1
Sta D - Night	-	-	-	-	-	-	-	-	1	20.00	-
Total Day	-	-	-	-	-	-	-	-	_	-	1
Total Night	-	-	-	-	-	-	-	-	1	20.00	

Species: Coho Salmon n. . rh.p.chas kisutch (cont.)

Size Class 151-175	mm										
	July	76	Sept	76	Nov	76	Marc	h 77	Ma	y 77	Jul
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No
Sta 2 - Day	_	-	-	-	-	_	_	_	_	_	_
Sta 2 - Night	-	-	-	-	-	-	-	-	1	34.00	-
Sta 3 - Day	_	_	_	_	-	-	_	-	_	_	_
Sta 3 - Night	-	-	-	-	-	-	-	-	7	35.43	-
Sta 5 - Day	-	-	-	-	_	_	_	_	_	-	_
Sta 5 - Night	-	-	-		-	-	-	-	3	31.00	-
Sta 9 - Day	-	_	-	-	_	_	_	-	_	-	-
Sta 9 - Night	-	-	-	-	-	-	-	-	13	32.62	-
Sta 10 - Day	-	-	-	-	-	-	-	-	-	-	-
Sta 10 - Night	-	-	-	-	-	-	-	••	3	30.00	-
Sta 11 - Day	-	-	-	-	-	-	-	-	1	31.00	-
Sta 11 - Night	-	-	-	-	-	-	-	-	3	26.67	-
Total Day	-	-	-	-	-	-	-	-		31.00	-
Total Night	-	-	-	-	-	-	-	-	30	33.30 (4.550)	-
Size Class 176-200	mm										
Beach Seine											
Sta 2 - Day	-	-	-	_	_	-	_	-	-	-	-
Sta 2 - Night	-	-	-	-	-	-	-	-	1	50.00	-
Total Night	-	-	-	_	-	-	-	- /	1	50.00	-

Species: Chum Salmon Oncorhynchus keta

Size Class 26-50	July	76	Sept	76	Nov	76	Marc	ch 77	May	, 77	July
Beach Seine	No		No	Wt	No _		No	Wt	No	Wt	No
Sta 2 - Day	_	-	-	_	-	-	1	.90	-	-	-
ita 2 - Night	-	-	-	-	-	-	-	-	1	.60	-
Sta 3 - Day	-	-	-	-	-	-	-	_	_	-	-
Sta 3 - Night	-	-	-	-	-	-	1	.60	-	-	-
Sta 5 - Day	_	-	-	-	-	-	5	.83	-	-	-
Sta 5 - Wight	-	-	~	-	-	-	-	-	-	-	-
Sta 9 - Day	-	-	-	-	-	-	5	.98	-	-	-
Sta 9 - Night	-	-	-	-	-	-	1	.90	-	-	-
Total Day	-	-	-	-	-	-	11	.90	-	-	-
SD							_	(.121)	_		
Total Night	-	-	-	-	-	-	2	.75 (.212)	1	.60	-
Size Class 51-75	mm										
Beach Seine											
Sta 2 - Day	-	-	-	-	-	-	2	1.35	-	-	-
Sta 2 - Night	-	-	-	-	-	-	2	1.15	-	-	-
Sta 3 - Day	-	-	-	-	-	-	-	-	-	-	-
Sta 3 - Night	-	-	-	-	-	-	4	1.43	-	-	-
Sta 5 - Day	-	-	-	-	-	-	2	1.43	-	-	-
sta 5 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 9 - Day	-	-	-	-	-	-	2	1.40	7 4	2.59 2.78	-
Sta 9 - Night								-			_

Species: Chum Salmon Oncorhynchus keta (cont.)

Size Class 51-75	mm (con	t.)									
	Jul	76 T	Sept	t 76	Nov	76	Mar	ch 77	Ma	xy 77	July
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No
Sta 10 - Day											
	-	•	-	-	-	-	-	-	-	-	-
Sta 10 - Night	-	-	-	-	-	-	1	1.40	1	1.10	-
Total Day	-	-	-	_	_	-	6	1.39	7	2.59	_
S D							•	(.112)	•	(.700)	
Total Night	-	_	_	-	_	_	7	1.44	5	2.44	_
-							•	(.062)	•	(.767)	
								,,,,,,		(1.07)	
Size Class 76-100	mm										
Beach Seine											
Sta 2 - Day	_	_	-	-	_	-	_	_	1	3.00	_
Sta 2 - Night	-	-	-	-	-	_	-	-	_	-	_
Sta 3 - Day	-	-	-	-	-		_	-	-	-	-
Sta 3 - Night	-	-	-	-	-	-	-	-	1	4.00	-
Sta 5 - Day	_	_	_		_	_	_		1	1.50	
Sta 5 - Night	_	_	_	_		_	_	_		1.50	-
0 0 1 1				_	_	_	_	-	-	-	-
Sta 9 - Day	-	-	-	-	_	_	_	-	-	-	_
Sta 9 - Night	-	-	-	-	-	-	-	-	1	4.70	-
Total Day	-	_	_	_	_	_	_	_	2	2.25	
SD									•	(1.061)	
Total Night	-	-	-	-	-	_	_	_	2	4.35	
										(.495)	
										,	

٠

Species: American Shad Alosa sapidissima

Size Class 26-50		76	Se	p t. 76	No	v 76	Marc	h 77	Mas	, 77	July
Beach Seine	No	Wt	No.	Wt	No	Wt	No	Wt	No	Wt	No
Sta 2 - Day	_	-	2	1.08	_	-	_	-	_	_	_
Sta 2 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 5 - Day	-	-	1	.15	-	_	_	_	_	_	_
Sta 5 - Night	-	-	-	-	-	-	-	-	-	-	-
Total Day SD	-	-	3	.77 (.537)	-	-	-	-	-	-	-
Size Class 51-75	men										
Beach Seine											
Sta 2 - Day	-	-	4	1.76	-	-	-	-	-	_	-
Sta 2 - Night		-	-	-	-	-	~	-	-	-	-
Sta 5 - Day	-	-	5	1.62	-	_	-	-	-	-	-
Sta 5 - Night	-	-	-	-	4	3.40	-	-	-	-	-
Sta 9 - Day		-	7	1.71	1	2.50	-	-	_	_	-
Sta 9 - Night	-	-	-		-	-	-	-	-	-	-
Sta 10 - Day	_	-	~	_	2	3.30	_	-	-	-	-
Sta 10 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 11 - Day	_	-	1	3.09	_	_	_	_	-	_	_
Sta 11 - Night	-	-	-	_	-	-	-	-	-	-	_

Species: American Shad Alosa sapidissima (cont.)

		July	76	Set	pt 76	No	v 76	Marc	h 77	Ma	ay 77	Jul
Beach Se	ine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No
Total Da	У	-	-	17	1.78	3	3.03	-	-	-	-	_
					(.323)		(.494)					
Total Ni	ght	-	-	-	•	4	3. 4 0 (.700)	-	-	-	-	-
Size Cla	ss 76-10	O men										
Beach Se	ine											
Sta 3 -	Day	-	_	-	_	-	_	-	_	_	-	_
Sta 3 -	Night	-	-	-	-	8	6.15	-	-	-	-	-
Sta 5 -	Day	_	_	_	_	_	-	-	_	_	_	_
Sta 5 -	Night	-	-	-	-	13	6.11	-	-	-	-	-
Sta 9 -	Day	_	_	-	_	_	_	-	_	1	10.00	-
Sta 9 -	Night	-	-	-	-	-	-	-	-	-	-	-
Sta 10 -	Day	-	_	_	_	_	_	_	_	_	_	_
Sta/10 -	Night	-	-	-	-	10	6.05	-	-	-	-	-
Sta 11 -	Day	-	-	1	3.90	1	6.35	′ _	_	_	_	_
Sta 11 -		-	-	-	-	25	6.97	-	-	-	-	-
Total Da	У	-	-	1	3.90	1	6.35	_	_	_	_	_
Total Ni SD	ght	-	-	-	-	56	6.43	-	-	1	10.00	_

Species: American Shad Alosa sapidissima (cont.)

	Jul	y 76 Sept 76			Nov 76		Marc	h 77	May 77		July
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No
Sta 3 - Day	-	-	-	_	_	-	_	_	_	_	-
Sta 3 - Night	-	-	-	-	1	10.00	-	-	-	-	-
Sta 5 - Day	_	_	_	-	-	-	-	-	-	-	-
Sta 5 - Night	-	-	-	-	1	12.00	-	-	-	-	, 1 1
Sta 9 - Day	-	-	-	-	-	-	-	-	_	-	1 1
Sta 9 - Night	-	-	-	-	-	-	-	-	-	-	-
Sta 10 - Day	-	-	-	_	_	-	-	~	-	-	-
Sta 10 - Night	-	-	-	-	1	10.00	-	-	-	-	-
Sta 11 - Day	_	-	_	-	-	-	_	-	-	-	1 1
Sta 11 - Night	-	-	-	-	6	8.00	-	-	-	-	-
Total Day SD	-	-	-	-	-	-	-	-	-	-	2 1
Total Night SD	-	-	-	-	9	8.89 (1.445)	-	-	-	-	1 1
Size Class 151-1	175 mm										
Beach Seine											
Sta 3 - Day	-	-	_	-	_	-	_	_	-	_	-
Sta 3 - Night	-	-	-	-	-	-	-	-	-	-	1
Total Night	-	_	-	-	_	_	_	-	-	_	1

Species: American Shad Alosa sapidissima (cont.)

	Jul	y 76	Sep	t 76	Nov	76	Marc	h 77	May	77	Jul
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No
Sta 11 - Day	_	_	_	-	_	_	_	_	_	_	_
Sta 11 - Night	-	-	-	-	-	-	-	-	-	-	1 '
Total Night	-	-	-	-	-	-	-	-	-	-	1 ·
Size Class 201-25	O mmm										
Beach Seine			₹.								
Sta 11 - Day	-	-	_	-	-	_	_	_	_	_	_
Sta 11 - Night	-	-	2	115.5	-	-	-	-	-	-	4
Total Night SD	-	-	2	115.5	-	-	-	-	-	-	4 :
Size Class 251-3	00 mm										•
Beach Seine											
Sta 11 - Day	-	-	_	_	-	-	_	_	_	_	_
Sta 11 - Night	-	-	-	-	-	-	-	-	-	-	1 1
Total Night	-	-	-	-	-	-	-	-	-	-	ı
Size Class 301-3	50 mm										
Beach Seine											
Sta 3 - Day	_	_	_	_	-	_	-	_	_	-	_
Sta 3 - Night	-	_	_	-	-	_	_	_	_	_	2 2

Species: American Shad Alosa sapidissima (cont.)

Size Class 301-35		(cont.)									
Beach Seine	No	ly 76 W t	No No	t 76 Wt	Nov No	/6 Wt	Marc No	n // Wt	May No	// Wt	July No
Sta ll - Day						_	_				
Sta 11 - Night	-	-	-	-	-	-	-	-	-	-	2 2:
Notal Night	-	-	-	-	-	-	-	-	-	-	4 2
Species: Carp C	- -	carpio									
Size Class 26-50		ly 76	Sep	t 76	Nov	76	Marc	h 77	May	77	Jul
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No
Sta 10 - Day Sta 10 - Night	1	- .99	_	-	-	-	-	-	-	-	-
Total Night	1	.99	-	-	-	-	-	-	-	-	-
Size Class 51-75	men.										
Beach Seine											
Sta 5 - Day Sta 5 - Night	1 -	3.55	-	-	-	-	-	-	-	-	-
Total Day	1	3.55	-	-	-	_ *****	***	-	-	-	-
Pyke Net											
Sta E - Night	2	3.71	-	-	-	-	-	-	-	-	-
Total Night	2	3.71 (2.149)	-	-	-	-	-	-	-	-	-

Species: Carp Cyprinus carpio (cont.)

Size Class 350	nen										
	J\	1ly 76	Sep	t 76	Nov	76	Marc	h 77	Ma	y 77	Jul
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	<u>No</u>
Sta 3 - Day	-	_	_	_	-	-	_	_	9	2314	_
Sta 3 - Night	-	-	-	-	- '	-	-	-	-	-	-
Sta 5 - Day	1	1384	_	-	_	_	_	_	1	1625	_
Sta 5 - Night	1	1132	-	-	-	-	-	-	1	1380	-
Sta 9 - Day	_	_	_	_	_	_	_	_	1	1652	2
Sta 9 - Night	3	1893	-	-	-		-		1	1332	-
Sta 11 - Day	_	_	_	_		_	_	_	1	1016	_
Sta 11 - Night	1	1242	-	-	-	-	-	-	ī	759	-
Total Day	1	1384	_	-	_	-	_	_	12	2093	_
Total Night	5	1610	-	-	-	- .	-	-	3	1157	-

Species:	Squawfish	Ptychocheilus	oregonensis
----------	-----------	---------------	-------------

Jul
Jul
No
-
1
1

Size Class 76-100				
Beach Seine	July 76 No Wt	Sept 76	Nov 76 Harch 77 May 77 No Wt No Mt No Mt No	J ul:
Sta 5 - Day	8 7.63			
Sta 5 - Night		•		-
Total Day	8 7.63			_
SD	(1.640)			
Fyke Net		n de la companya de La companya de la co		
Sta D - Day				_
Sta D - Night				1
Sta E - Day				-
Sta E - Night				1
Total Night	•			2
Siże Class: 151-175	mm			
Beach Seine				
	•	and the second		
Sta 5 - Day Sta 5 - Night	2 34.00	-		-
bus 5 - algae	2 34.00			_
Total Night	2 34.00	- g : ∮ - *		
SD	(5.660)			1
Pyke Net	, 11:	i de la final de l		,
Sta D - Day	-			_
Sta D - Night				1
Total Night				

	a.			
Species:	Squawfish	Ptychochellus oregonen	sis (cont.)	
Size Class	176-200		Maria de La Maria	

Size Class 176-200 mm	一个的特殊的。			
Beach Seine No	ly 76 Sep	t 76 Nov 7		- T - CS - LL
Sta 3 - Day			Wt No Wt	No Wt No
Sta 3 - Night		63.00		
Sta 5 - Day				
Sta 5 - Night 5	51.40			
Total Wight 5	51.40	14 OA		
WEST OF STATE OF BUILDING	a confidence			
Size Class 201-250				
Beach Seine			The strate	
Sta 5 - Dey				
Sta 5 - Night 1 ?				
Total Night	18.00 🐈 🚣		- 10 -	
Sise Class 251-300 see	San			
Beach Seine				
Sta 5 % Day	a the same of the	1.		
	67.00			
	67.00			
A description of		4.4.4		
	130m - * - 132 - 1			

Species: Squawfish Ptychocheilus oregonensis (cont.)

	Beach Sei	no de Margaria	July 76	Sept 76	Nov E No	76 Marc	h 77 y Me No	lay 77
	Sta 5 -	Day	404.00					WE N
	Total Nic	he	4 404,25	To Zenbey				
1976	8D	Action 12 to 15	(43.150					
	Size Clas	# 350 mma						
	Beach Sei	ne i						
	8ta 5 - 1	Night	6 549.00					
24	Total Nig	h t .)*	6 549.00			(=)		
			(244.67)					
A.	Salar Salar		. W	range of the second of the second		MANAGE TO SAME THE WAS		
	. Species:	Cutthfoat)	Balmā olari	et de partie				
	DANG CARRE	. 401-520	一 大學 原列系	AN A SHALL DOWN	Nov :		Allender in Alexandria	
\$ 100 P	医可怜 网络姓氏成为	G. Profession	No Wt	No N	Nov 1	Wt No	3 - 20 14 /	ay 77
	Sta 5 - H	lay Light						
Į.	Sta 5 - H	e # 2.4						96.00
								-
) ಕ ಗೌಹಾಗಿಕೆಕಾ ಗರು. 	in in the control of the			*			

	4.77	E	Simmer	es de July	76	Rent 78	Mari 46	the state of the	· 1000000000000000000000000000000000000	A STATE OF THE STA
٠,	Beach	Bein	B THE BEST	Most Co	Y - W-		TO MA	A STATE OF THE E	on //	iny 77
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	" Car when I do	7			NO HL	NO W	<u>t 🥕 No</u>	ME NO	WE No
	Sta :	j – D	BY					() (fair i de la colo	
ď,	Sta !	1 - M	ight 🧢						• 4	
					. T 35.70				1	96.00
3	Total	Michigan				and the second		and Million Town		
	3.5	may	100	3 m	· •				· · · · 1	96.00

Species: Cutthroat Saimo Clarki (cont.)

Size Class 301-3	July	76	Sept	: 76	No	v 76	March	. 77	May	77	Jul
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No
Sta 11 - Day	-	-	_	_	-	<u>-</u>	_	_	_	-	-
Sta 11 - Night	-	-	-	-	-	-	•	-	-	-	1
Total Night	-	-	-	-	-	-	-	-	-	-	1 .
Species: Surf Sm	•	omesus	pretiosi	48							
Size Class 101-1		76	Sept	- 76	No	v 76	Marcl	27	May	77	Jul
Beach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No.
Sta 3 - Day	-	-	-	-	2	5.75	-	-	-	-	-
Sta 3 - Night		-	-	-	-	-	-	-	-	-	-
Total Day SD	-	-	-	-	2	5.75 (.351)	-	-	-	-	-
Size Class 126-1	50mm										
Beach Seine											
Sta 3 - Day	-	-	-	-	-	-		-	-	-	-
Sta 3 - Day Sta 3 - Night	-	-	-	-	1	18.00	-	-	-	-	-
•	-	- - -	-	- -	1		<u>.</u> .	- - -	-	- -	-

Species: Surf Smelt Hypomesus pretiosus (cont.)

Beach Seine	July 76		Sept 76		Nov 76		March 77		May 77		Jul	
	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	
Sta 11 - Day	-	-	-	_	1	39.50	_	-	_	_	_	
Sta 11 - Night	-	-	-	-	-	-	-	-	-	-	-	
Total Day	-	-	-	-	1	39.50	-	-	-	-	-	
Species: Eulachon		ichthys	pacifi	сив			-	<u>, </u>				
The Class Levelo		y 76	Sept 76		Nov 76		March 77		May 77		Jul	
seach Seine	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	
Sta 11 - Day	_	_	_	_	-	_	_	_	_	-	_	
ta 11 - Night	-	-	-	-	-	-	1	15.00	-	-	-	
otal Night	-	-	-	-	-	-	1	15.00	-	-	-	
ize Class 151-17	5 mm											
each Seine												
Sta 2 - Day	-	_	-	-	-	-	1	21.00	-	_	-	
ta 2 - Night	-	-	-	-	-	-		-	-	-	-	
ta 3 - Day	-	-	-	-	-	_	-	_	-	-	-	
ta 3 - Night	-	-	-	-	-	-	13	19.46	-	-	-	
Sta 5 - Day	-	_	_	_	_	-	_	-	-	_	-	
Sta 5 - Night	-	-	~	-	_	_	1	22.00	-	_	_	

247

Species: Eulachon Thaleichthys pacificus (cont.)

Beach Seine	July 76		Sept 76		Nov 76		March 77		May 77		Jul	
	No	Wt	No	Wt	No	Wt	No	Wt	No	Wt	No	
Sta ll - Day	-	-	-	_	-	_	3	23.67	_	-	_	
Sta 11 - Night	-	-	-		-	-	20	20.00	-	-	-	
Total Day SD	-	-	-	-	-	-	4	23.00 (1.391)	-	-	-	
Total Night SD	-	-	-	-	-	-	34	19.85	-	-	-	
Size Class 176-2	00 men											
Beach Seine												
Sta 3 - Day	-	-	-	_	_	-	_	-	_	_	_	
Sta 3 - Night	-	-	-	-	-	-	2	25.50	-	-	-	
Sta 5 - Day	-	-	_	-	-	-	_	_	-	_	_	
Sta 5 - Night	-	-	-	-	-	-	2	27.00	-	-	-	
Sta 11 - Day	-	-	-	-	-	_	-	_	-	_	_	
Sta 11 - Night	-	-	-	-	-	-	4	29.00	-	-	-	
Total Night BD	-	-	-	-	-	-	8	27.63 (1.472)	-	-	-	

APPENDIX TABLE B5 (Concluded)

Species: Longfin Smelt Spirinchus thaleichthys

	July	76	Sept	76	No	ov 76	Marc	h 77	May	77
Beach Seine	No	Wt	No	Wt	Мо	Wt	No	Wt	No	Wt
Sta 11 - Day	-	_	-	_	_	_	-		_	_
Sta 11 - Night	-	-	-	-	-	-	-	-	-	-
Total Night SD	-	-	-	-	-	-	-	-	-	-
Size Class 101-1	25 mm									
Beach Seine										
Sta 3 - Day		-	_	_	_	-	-	_	_	_
Sta 3 - Night	-	-	-	-	4	9.88	-	-	-	-
Sta 10 - Day	-	-	-	_	_	-	-	_	_	_
Sta 10 - Night	-	-	-	-	1	8.00	-	-	-	-
Sta 11 - Day	_	_	-	_	_	_	-	_	-	_
Sta 11 - Night	-	•	-	-	9	10.61	-	-	-	-
Total Night	-	-	_	_	14	10.22	_	_	_	_
as						(.640)				
Size Class 126-1	50 mm									
Beach Seine										
Sta 11 - Day	_	-	-	-	_	-	-	-	-	_
Sta 11 - Night	-	-	-	-	1	16.00	-	-	-	-
Total Night						16.00				

248

APPENDIX B6: AGE CIASS, NUMBER, MEAN WEIGHT AND LENGTH PER INDIVIDUAL FOR IMPORTANT NEKTON, COLLECTED AT MILLER SANDS, RIVER KILOMETRE 39, MARCH 1975 - MAY 1976

Appendix Table B6

Age Class, Number, Mean Weight and Length Per Individual for Important Nekton, Collected at Miller Sands, River Kilometre 39 March 1975 - May 1976.

		Peamouth Chub	Chinook Salmon	Starry Flounder
Age Clas	ss l			
Number		29	217	117
Weight ((g)	5.1	5.1	5.9
Length	(mm)	72.3	69.6	73.2
Age Clas	ss 2			
Number		22	41	55
Weight	(g)	15.7	30.2	46.7
Length	(mm)	109.3	136.6	129.4
Age Clas	ss 3			
Number		-	1	3
Weight	(g)	-	72.5	45.5
Length	(mm)	-	187.0	171.3
Age Clas	ss 4			
Number		5	-	-
Weight (77.3		_
Length ((mm)	194.0	_	
Age Clas	3s >4			
Number		2	-	-
Weight (-	112.5	-	-
Length ((mm)	206.0	-	-
Total				
Number		58	259	175
Weight (-	19.1	9.3	19.4
Length ((mm)	101.4	80.7	92.5

APPENDIX B7: AGE CLASS, NUMBER, MEAN WEIGHT, AND LENGTH PER INDIVIDUAL COLLECTED OF IMPORTANT NEKTON AT RIVER KILOMETRE 39, JULY 1976 - JULY 1977

Appendix Table B7

Age Class, Number, Mean Weight and Length Per Individual for Important Nekton, Collected at Miller Sands, River Kilometre 39. July 1976 - July 1977.

	Peamouth Chub	Chinook Salmon	Starry Flounder	Threespine Stickleback	Largescale Sucker
Age Class 1					
Number	409	833	706	3 6	18
Weight (g)	1.95	7.94	3.02	.48	1.51
Length (mm)	58.53	85.46	55.44	33.69	52.16
Age Class 2					
Number	314	74	120	147	5
Weight (g)	12.40	28.32	35.96	.98	8.30
Length (mm)	102.20	137.90	137.86	43.08	97.20
Age Class 3					
Number	33	9	37	155	31
Weight (g)	35.66	109.20	63.78	2.04	36. 65
Length (mm)	158	221.10	176.22	53.90	151.40
Age Class 4					
Number	69	-	7	190	_
Weight (g)	49.21	-	100.60	3.64	-
Length (mm)	175.90	-	202.70	64.10	-
Age Class 4>					
Number	155	_	-	_	71
Weight (g)	103.70	_	-	-	963.30
Length (mm)	218.10	-	-	-	449. 70
Total					
Number	980	916	870	528	135
Weight (g)	25.85	10.58	10.93	2.21	515.40
Length (mm)	109.37	91.03	73.13	53.18	218.80

APPENDIX B8: NEKTON IN ORDER OF MEAN ANNUAL ABUNDANCE.

AVERAGE WEIGHT, IN GRAMS, PER INDIVIDUAL MEASURED

AND EXPANDED, TOTAL WEIGHT OF FISH CAPTURED AT

MILLER SANDS, JULY 1976 - JULY 1977

Appendix Table B8

Nekton in order of mean annual abundance. Average weight, in grams, per individual measured and expanded total weight of fish captured at Miller Sands. July 1976 - July 1977.

Species	Total				Beach Sein	ne		Fyke Net	
	No	Wt	Wt/Ind	No	Wt	Wt/Ind	No	Wt	W.
Peamouth Chub	3219	47055	14.6	2784	37634	13.5	434	9419	
Chinook Salmon	2205	15235	6.9	2191	15180	6.9	14	44	
Starry Flounder	1992	12559	6.3	1984	12502	6.3	8	57	
Threespine Stickleback	1020	1787	1.8	862	1344	1.6	158	442	
Largescale Sucker	237	76489	322.7	231	74891	324.2	6	1589	
Staghorn Sculpin	218	1870	8.6	161	1447	8.9	57	424	
Prickly Sculpin	125	1441	11.5	111	1079	9.7	14	362	
Longfin Smelt	118	935	7.9	118	935	7.9	-	-	
American Shad	111	2298	20.7	111	2298	20.7	-	-	
Coho	73	1894	25.9	68	1843	27.1	5	51	
Eulachon	47	1003	21.3	47	1003	21.3	-	-	
Chum Salmon	43	74	1.7	43	74	1.7	-	-	
Squawfish	32	5793	181.0	28	5742	205.1	4	51	
Carp	27	39033	1445.7	25	39025	1561.0	2	7	
Surf Smelt	4	69	17.3	4	69	17.3	-	-	
Cutthroat	2	390	195.0	2	390	195,0	-	-	

APPENDIX B9: MACROINVERTEBRATE, NUMBER OF INDIVIDUALS CAPTURED IN ALL REPLICATIONS AT MILLER SANDS, OREGON, MARCH 1975 - MAY 1976

. The Perrate, Washer of While the Captured in all Replications at Miller Sands, Oregon. March 1975 - May 1976

March 1975

	Gı	cab 1	G	rab 2	Gı	rab 3	Gı	rab 4	Gı	rab 5	Gr	ab 6
·m	No.	Weight	No.	Weight		Weight		Weight		Weight	No.	Weight
am salmonis	78	0.1772	33	0.0680	37	0.0642	35	0.0758	2	A Cale	96	0.1642
mid ae	1		-		1		-		_		15	
: 1	1		-		-		-				1	.**:
ieta	1		1		1		5	,	3		17	
.la	-		1		1		1		2		_	
marus	-		1		-		-	1	-	1.4	13	0.0347
	-		1		-						5 - ,	+7
oda	-		-		1		1		-		{	• 1
orus	-		-		-		·		2	· •	1	
ra	-		-		-		-		- ·		1	
								3				
: Organisms	81		37		41		42		9		143	
site Wet Wt.		0.0054		0.2236		0.0003		0.0083		0.0144	13 34	0.0421
Biomass		0.1826		0.2916		0.0645		0.0841	9 1 16	0.0144		0.2410
							*				# S. S. S.	
					STAT	rion 2	•					
								a a sa sa ta	n' ayer a			4
m salmonis	42	0.0323	52	0.0616	34	0.0462	70	0.1041	63	0.0886	89	0.1565
iet a	152	0.1080	155	0.2712	175	0.4377	354	0.8551	361	0.8395	846	2.5600
. a	6		1		-		2		2		- 1	1
ıdae	2		4		2		14		6		. 13	
	2		1		2		1		•		$\gamma \in 1^{n}$	
mercedis	1		-		2		- :		-		. y 🗪	
·la	-		-		-		-	4	u Nerr 🗯		1	
1	~		-		-		-	<i>y.</i> •	1, 🕳 11.		1	
narus	-		-		-		-		•		. 1	
Organisms	205		213		415		441		432	45 (114	953	
ite Wet Wt.		0.0044		0.0397		0.0135		0.0909		0.1063		0.0652
11000455		0.1447		0.3725		0.4974		1.0501		1.0344		2.7827

	ST	ATION 5		
***	Grab 2 No. Weight No.	Grab 3 Gral Weight No. 3	o 4 Grab 5 Weight No. Weig	
um salmonis 80 0.1916 leta 51 0.0910	31 0.0496 41 29 0.0779 19		0.1415 42 0.07 0.0891 88 0.13	
nidae A 2 2 de a coda	2 2 1	6 2 4	3 1 2	3 3 1
mercedia Organisms 141	67 3 63	132	138	127
site Wet Wt. 0.0158 1 Biomass 0.2984	0.0143 0.1418	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 0.0520 & 0.51 \\ 0.2826 & 0.72 \end{array}$	10 209 0.1984
706 1.1633 1ta 1	0.8250 315 118 0.8332 560 - 4 22 10 15 50	1.4318 496 1 25	3 16	90 467 0.9680 21
da 1	1 0.5388 - 5 3 7 4	d 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12115 51 0.21 3 0.3920 17 0.52	
ocroedis - Organisms 1053	76 . 947	774	1 940	829
Biomass 2.1714	0.2744 2.4714	(a) 0.1914		0.3070

		STATION 10	to the same of		
Grab 1 No. Weight	Grab 2 No. Weight	Grab 3 No. Weight	Grab 4	Grab 5 No. Weight No	Grab 6
um salmonis 370 0.6507 haeta 269 0.4772	514 0.8250 365 0.6281	456 0.8568 320 0.6374		393 0.5774 55 246 0.4392 39	0.7835
nidae 2 0.5077	17 3 3 D.5944	6	7	19	3 5 Tay 1 5 Tay 1 7 Ta
is mercodis 1	1	2			
1 Organisms 656 Osite Wet Wt. 0.0719	904 0.0348	793	1024	662 95	20 CM 20 14
11 Biomass 17.7075	2.0823		2.1854	0.0582 1.0748	0.0539 1.6274
ma salmonis 327 0.4461	257 0.3819	STATION 11 (249 0.3862	206 0.3833	325 D.4589 186	6 0.2329
midae	2 2	2		2	
a da marus		1	1		
1 Organisme 356	264	254	212	335 196	1 (i) (i) (i) (ii) (ii) (ii) (ii) (ii) (
1 Biomass 0.0067	0.0163 F	0.0647	0.0331 0.4164	0.0427	0.0028

	G	rab 1	G	rab 2	G	rab 3	G	rab 4	G	rab 5	G	rab 6
m	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight
um salmonis	1352	0.5459	1304	1.3235	906	0.5678	11	0.0092	7	0.0075	6	
aet a	674	0.9682	496	0.8056	40	0.1037	_		1		_	
ia	5		7		1		1	0.0030	_		1	
mids	20		6		1		_		_		_	
ota	1		-		_		-		-		_	
Organisms	2052		1813		948		12		8		7	
osite Wet Wt.		0.0907		0.0523		0.0034	•		_		•	0.0071
l Biomass		1.6048		2.1824		0.6749		0.0122		0.0075		0.0071

Benthic Samples
May 1975

Grab 1		Grab 1	(Grab 2		Grab 3		Grab 4		Grab 5		Grab 6
-m	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight
.um salmonis	65	0.1863	22	0.0684	63	0.1907	62	0.2130	60	0.1674	57	0.1729
.la	1		-		1		2		-		1	
midae	10	0.0006	7		6		11		9		10	0.0005
.ae ta	-		1		3		2		1		-	
a	-		-		1	0.0005	-		-		-	
ra	-		-		-		1		-		-	
.0	-		-		-		1		-		-	
Organisms	76		30		74		79		70		68	
osite Wet Wt.		0.0005		0.0010		0.C027		0.0089		0.0005		0.0015
1 Biomass		0.1874		0.0694		0.1939		0.2219		0.1679		0.1749
					STA:	rion 2						
ım salmonis	4		-		-		_		2		12	
iet a	1096	1.8088	880	0.8092	1208	1.7532	740	0.8968	708	1.6120	1220	2.4792
.a	16		24		16		16		8		8	
ni dae	172	0.9612	180	0.0400	280	1.0632	160	0.6212	86	0.6228	176	0.4480
ì	28	<0.0020	20	<0.0030	16	<0.0020	12	<0.0020	12	<0.0010	12	<0.0020
mercedis	4				-		-		-		-	
1	-		2	0.4070	-		4		-		-	
insect	-		1	0.0593	-		1	0.0723	-		-	
Organisms	1320		1107		1520		933		816		1428	
site hat Wt.		0.0316		0.0316		0.0092		0.0180		0.0214		0.0116
Biomass		2.8036		1.3491		2.8276		1.6103		2.2575		2.9408

STATION (1)

	(Grab 1	(Grab 2	(Grab 3	(Grab 4	(Grab 5	(Grab 6
sm	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight
ium salmonis	73	0.2134	56	0.1579	116	0.3768	85	0.2654	54	0.1644	82	0.2727
haeta	231	0.3224	190	0.3487	161	0.3448	202	0.3368	167	0.2535	144	0.2839
ula	10		13		7		20	0.1130	6		6	
omidae	30		29	0.0132	22		27	0.0172	43	0.0162	27	
, and a	4		6		4		5	0.4680	3		3	
des	5	<0.0005	4	<0.0005	. 5	<0.0005	6	<0.0005	1	<0.0005	6	<0.0005
ammarus	-		-		-		1	0.0033	-		-	
al Organisms	353		298		315		346		274		268	
posite Wet Wt.		0.1427		0.6751		0.3125				0.1590		0.0704
1 Biomass		.6790		1.1954		1.0346		1.2042		.5936		.6275
					ST	ATION 11						
: Um salmonis	77	0.2006	530	0.1172	620	0.1345	60	0.1370	36	0.0622	37	0.0710
naeta	151	0.3526	112	0.2820	139	0.2947	114	0.2573	99	0.2500	37	0.2710
ıla	42	0.0658	32	0.4292	19	0.0497	22	0.0565	19	0.0611	25	0.0546
∍m idae	17		18		27		15		16		17	
⊲oda	1		2		-		1		1		1	
1e s	2	<0.0005	2	<0.0005	3	<0.0005	2	<0.0005	2	<0.0005	3	<0.0005
<u> </u>	-		-		-		1		-		-	
ie Larva	-		-		-		•		1		-	
1 Organisms	290		696		808		215		174		120	
osite Wet Wt.		0.0136		0.1159		0.0107		0.0173		0.0230		0.0237
1 Biomass		.6331		.9448		.4901		.4686		.3968		.4208

STATION 5

					01111	1011						
	(Grab 1	C	Szab 2	G	rab 3	G	Grab 4	c	Grab 5	G	rab 6
÷m	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight
.um salmonis	-		_		4		8		4		2	
:aet a	1320	2.61 0	1452	2.1344	1168	1.4852	1104	1.1136	1808	2.9716	974	1.7240
ula	8		8		8		8	0.0304	20	0.0276	8	
·mi dae	136	0.5012	144	0.3740	136	0.6824	160	0.3512	132	0.3376	64	0.1412
les	8	<0.0020	12	<0.0020	12	<0.0020	16	<0.0020	12	<0.0020	2	<0.0010
mt a	8		12		8		8		12		10	
insects	8		-		-		-		-		-	
∗od a	-		4	4.0172	-		-		4		-	
is m.	-		-		-		4		-		-	
:lminthes	-		-		-		4		-		-	
il Organisms	1488		1632		1336		1312		1992		1060	
osite Wet Wt.		0.5500		0.1872		0.4036		0.1900		0.1972		0.3984
il Biomass		3.6632		6.7148		2.5732		1.6872		3.5360		2.2646
•					STAT	ION 3						
um salmonis	87	0.3133	106	0.3926	32	0.1198	37	0.1011	33	0.1385	48	0.0756
aeta	360	0.3716	514	0.6388	121	0.1473	391	0.3944	354	0.2813	521	0.4369
.la	21		24		1		12		21	0.0336	33	0.0723
midae	24	0.0611	15		5		15		16		22	
oda	1		-		-		4	1.7400	~		1	
····s	9	0.0005	6	0.0005	3	0.0005	3	0.0005	10	0.0005	5	0.00 05
	-		1	1.5655	-		-		-		-	
t a	-		-		1		1		-		-	
1	-		-		1		-		-		2	
3 m.	-		-		1		-		-		-	
marus	-		-		-		1		-		-	
ee Larvae	-		-		-		-		-		6	
l frganisms	502		666		165		464		434		648	
site Wet WT.		0.0502		0.7149		0.0445		0.1564		0.0355		0.2333

	G	rab 1	G	rab 2	G	rab 3	G:	rab 4	G:	rab 5	G:	rab 6
m	No.	Weight										
um salmonis	118	0.2683	12	0.0248	16	0.0341	3	0.0038	7	0.0104	2	
ie ta	3		-		2		-		-		-	
.1 a	3		0	0.0170	8	0.0382	8	0.0235	3	0.0026	8	3.0700
mids	1		2	0.0005	4		8	0.0017	4	0.0005	1	
-d a	2		-		-		-		-		-	
marus	1		-		-		-		-		-	
l Organisms	128		23		30		19		14		11	
site Wet Wt.		0.1269		0.0175		0.0048						0.0023
Biomass	•	.3952		.0598		.0771		.0290		.0135		3. 0723

MILLER SANDS Benthic Samples July 1975

	G	rab l	G	rab 2	G	rab 3	G	Grab 4	G	rab 5	G	rab 6
ı sm	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Wei ght
nium salmonis	23	0.0351	16	0.0238	22	0.0298	25	0.0259	27	0.0524	18	0.0315
chaeta	4		1		2		-		-		1	
d ula	3		9	0.0190	9	0.0104	3	0.0005	5		6	
no midae	12		7	0.0005	11	0.0016	2		1		8	
ae ta	-		4		-		-		-		2	
.ea	-		-		1		-		_		_	
a mmarus	-		-		-		22	0.0593	-		-	
tal Organisms	42		37		45		52		35		36	
mposita Wet Wt.		0.0073		0.0034 0.0467		0.0064 0.0482		<u><0.0005</u> 0.0862		0.0086 0.0610		0.0046 0.0361
					STAT	ION 2						
ium salmonis	12	0.0100	112	0.1016	44	0.0126	104	0.1372	26	0.0150	56	0.0612
rhaeta	1036	0.5044	1756	0.3276	1684	0.4208	2160	0.6920	1132	0.2582	2824	0.9072
ļul a	16	0.0220	-		4		4		_		4	
omidae	36	0.4112	16	0.0224	20	0.2084	8		14	0.0908	12	0.3420
∄ da			252	0.0020	24		40		6		28	
ae ta	_		-				4		-		_	
l-a	-		_		-		_		4	0.0406	-	
ıs m.	-		-		-		-		2	***************************************	-	
al Organisms	1100		2136		1776		2324		1184		2924	
osite Wet Wt.		0.9476		0.4536		0.0020 0.6438		0.0176 0.8468		0.0022		0.0020 1.3124

	G	rab 1	G	rab 2	G	rab 3	G	Grab 4	G	rab 5	G	rab 6
. Sm	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight
ium salmonis	1		0	0.0095	5	0.0096	-		4		_	
haeta	297	0.3975	517	0.2624	563	0.3977	752	0.4584	168	0.1564	1400	0.8472
iaeta	1		-		-		-		1		4	
omidae	4		76	9,2174	6	9,9287	20	0.2540	5	0.0418	20	0.2736
₽ oda	1	0.5800	1	0.0088	-		-		-		_	
cula	-		3		6	0.0216	-		1		-	
id a	-		3		7		4		-		12	
ea	-		2	0.0427	2		-		-		~	
al Organisms	304		615		590		776		179		1436	
posite Wet Mt.		0.0352		0.0039		0.0070		<0.0020		0.0031		0.0516
al Biomass		1.0127		0.5447		1.3646		0.7144		0.2013		1.1724
					STAT	ON 3						
ium salmonis	84	0.0796	125	0.1221	94	0.1028	104	0.1634	81	0.0975	93	0.0973
· naeta	57	0.0394	138	0.0674	102	0.0328	160	0.0976	128	0.0869	132	0.1110
ieta	1		_		_		-		-		_	
1 1a	9	0.0060	1		5		4		_		_	
∍mi dae	1		5		_		ı		2		1	
oda	2	0.0707	3	0.1163	3	0.1004	ī	0.462	4	0.1243	1	0.0377
a	1		2		1		2		5		3	
s mercedis	-		-		-		1		2		_	
.1 Organisms	155		274		205		273		222		230	
osite Wet Wt.		0.0041	-	0.0192		_0.0085	- · -	0.0101		0.0189		<0.0 005
l Biomass		01.1998		0.3150		0.2445		0.7331		0.3276		0.2465

STATION 10

	_	rab l	c	rab 2	C	rab 3		rab 4	,	Grab 5		rab 6
: sm	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight
inium salmonis	76	0.0851	87	0.0855	64	0.0544	41	0.0540	75	0.0540		0.0872
::haeta	260	0.1170	388	0.0833	403	0.0544	197	0.0540	246	0.0540 0.0956	57 71	0.0872
. ula	12	0.0652	300 7	0.13/1	403 3	0.1466	197	0.0936	246 5	1.1683	. –	0.0616
· omidae	3	0.0652	4		14		2) 1	1.1683	4 1	
poda	4	0.2276	•• 5	0.1639	5	0.1015	3	0.1255	5	0.1205	15	2.0453
. da	10	0.2276	18	0.1039	13	0.1015	5	0.1255	3	0.1205	12	2.0453
is mercedis	10		19		-		5		3			
18 MEICEGIS	-		-		-		-		_		1	
al Organisms	365		509		502		248		335		162	
mposite Wet Wt.		<0.0005		0.0071	•••	0.0151		<0.0005	-4-	<0.0005		0.450
al Biomass		0.4954		0.3936		0.3176		0.2736		1.4389		2.6441
		0.4554		0.5550		0.5170		0.2750		1.4309		2.0441
					STAT	ION 11						
: 1um salmonis	145	0.1224	148	0.1554	220	0.2331	108	0.1088	133	0.1851	86	0.0995
rnaeta	34	0.0094	34	0.0332	46	0.0548	48	0.0366	44	0.0830	16	0.0171
ae ta	2		-		5		1		_		_	
i u la	2		2		5		1		5		8	0.0167
`∋midae	1		5		6		2		4		2	
ia	12		2		10		8		6		6	
	-		1		2	0.0496	_		1	0.0870	1	0.0202
1-B	-		-		1		_		-		_	
.s mercedis	-		-		-		1		-		-	
:1 Organisms	197		192		295		169		193		119	
osite Wet Wt.	T21	0.0014	172	0.0620	273	0.0183	103	0.0017	133	0.1004	113	0.0012
1 Biomass		0.1332		0.2506		0.3558		0.1471		0.4555		0.1547

GI	ab l	G	rab 2	G.	rab 3	G	rab 4	G	rab 5	G	rab 6
0.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight
2	0.0642	21	0.0244	65	0.1214	5	0.0054	8	0.0087	54	0.0706
3		1		2		-		-		1	
1		-		-		-		1		-	
8	0.0083	7	0.0185	3		7	0.0131	11	0.0223	7	0.0347
0		-		2		1		3		-	
-		-		4		-		-		-	
4		29		76		13		23		62	
	$\frac{0.0038}{0.0763}$		<0.0005 0.0434		0.0076		<0.0005 0.0190		0.0017		<0.0005 0.1058
	2 3 1 8 0	2 0.0642 3 1 8 0.0083	2 0.0642 21 3 1 1 - 8 0.0083 7 0 - 	2 0.0642 21 0.0244 3 1 1 - 8 0.0083 7 0.0185 0 - 4 29 0.0038 <0.0005	2 0.0642 21 0.0244 65 3 1 2 1 8 0.0083 7 0.0185 3 0 - 2 - 4 4 29 76 0.0038 <0.0005	2 0.0642 21 0.0244 65 0.1214 3 1 2 1	2 0.0642 21 0.0244 65 0.1214 5 3 1 2 - 8 0.0083 7 0.0185 3 7 0 - 2 1 - 4 - 4 29 76 13 0.0038 <0.0005 0.0076	2 0.0642 21 0.0244 65 0.1214 5 0.0054 3 1 2 - 8 0.0083 7 0.0185 3 7 0.0131 0 - 2 1 - 4 29 76 13 0.0038 <0.0005 0.0076 <0.0005	2 0.0642 21 0.0244 65 0.1214 5 0.0054 8 3 1 2 1 8 0.0083 7 0.0185 3 7 0.0131 11 0 - 2 1 3 4 4 29 76 13 23 0.0038 <0.0005 0.0076 <0.0005	2 0.0642 21 0.0244 65 0.1214 5 0.0054 8 0.0087 3 1 2 1 8 0.0083 7 0.0185 3 7 0.0131 11 0.0223 0 - 2 1 3 4 4 29 76 13 23 0.0038 <0.0005 0.0076 <0.0005 0.0017	2 0.0642 21 0.0244 65 0.1214 5 0.0054 8 0.0087 54 3 1 2 1 1 1 - 1 - 1 8 0.0083 7 0.0185 3 7 0.0131 11 0.0223 7 0 - 2 1 3

MILLER SANDS Fenthic Samples August, 1975

	G	rab 1	Gz	ab 2	G	rab 3	Gr	ab 4	Gı	rab 5	Gı	rab 6
.sm	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.		No.	Weight
nium salmonis	23	0.0447	29	0.0572	24	0.0528	23	0.0362	33	0.0575	35	0.0519
ula	6		3		3		-		5	0.0225	5	0.0020
omidae								•				
atic insects)	-		6		1		3		4		2	
era	-		-		1		-		-		-	
1s mercedis	-		-		-		1		-		-	
al organisms	29		38		29		27		42		42	
mosite Wet Wt.		0.003		0.0025		0.0028		0.0048		0.0009		0.0005
il Biomass		0.0480		0.0597		0.0556		0.0410		0.0809		₹.9544
						STATIC	on 2					
lum salmonis	33	0.0645	-		-		-		_		_	
t naeta	54	0.0268	53	0.0111	10		13	0.0058	23	0.0071	36	0.0204
ieta	2		-		-		_		-		-	
} ula	-		-		1	0.7876	_		-		-	
midae										•		
polatic Insects)	2		8	0.0179	17	0.0632	21	0.0938	8	0.0276	32	0.0782
i ia	-		5		4	<0.0005	4		8	<0.0005	17	<0.0005
∷∞đa	-		-		1	0.0702	-		-		-	
·a	_		-		-		-		_		1	
7.5 a	. -		-		-		1		-		-	
al organisms	91		66		33		40		39		86	
osite Vot Wt.	4.	0.0050		<0.0005		0.0046		0.0008		<0.0005		0.0020
il Biomass		0.0963		0.0295		0.9261		0.1004		0.0357		0.1011

STATION 5

	G	rab l	G	rab 2	G	rab 3	G	rab 4	G	rab 5	Gr	a b 6
im s	No.	Weight	No.	Weight		Weight	No.		No.	-	No.	
tum salmonis	55	0.1168	75	0.1557	55	0.0884	39	0.0501	81	0.0891	62	0.0694
na eta	107	0.0656	231	0.0482	316	0.1141	138	0.0468	497	0.1345	623	0.2571
aet a	-		2		-		2		2		6	0.0379
ula	1		3	0.0115	1		1		5	12.1292	2	
o midae												
uatic insects)	7		5		11	0.0162	2		15	0.0221	7	
ia	5	<0.0005	19	<0.0005	12	<0.0005	14	<0.0005	22		8	<0.0005
∍oda	-		1	1.5277	-		-		-		-	
s mercedis	-		-		2	0.0052	-		-		1	
larva	2		-		-		-		-		-	
lae larva	-		-		-		-		1		-	
il organisms	177		336		397		196		623		709	
waite Wet Wt.		0.0208		0.0080		0.0057		0.0099		0.0010		0.0040
1 Biomass		0.2037		1.7818		0.2301		0.1073		12.3759	•	0.3689
						STATIO	N 3					
um salmonis	. 12	0.0148	_		13	0.0242	20		24		8	
aeta	810	0.1609	1024	0.0900	1016	0.3876	960	0.0994	1072	0.1131	1008	0.1175
eta	2		-		7		8		4			
l a	4		-		-		-		4		4	
midae												
itic insects)	26		44		15		20		28	0.0326	32	
j	50	<0.0005	56	<0.0005	11		48	<0.0005	56	<0.0005	<60	0.0005
ra	2		-		-		-		٠ -		~	
mercedis	2		4		-		-		-		-	
1	2		4		2	0.0380	-		4		4	
ie Larva	-		4		-		-		-		-	
organisms	910		1136	•	1064		1156	•	1192		1116	
site Wet Wt.		0.0577		0.0140		0.0361		0.0209		0.0137		0.0377
Biomass		0.2339		0.1045		0.4859		0.1208		0.1599		0.1557

	G	rab 1	G	rab 2	G	rab 3	٠G	rab 4	G	rab 5	Gr	ab 6
÷ m	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight
num salmonis	42	0.0264	21	0.0144	30	0.0144	30	0.0124	34	0.0101	43	0.0128
naeta	527	0.1719	235	0.0593	241	0.0702	294	0.0693	354	0.1232	352	0.0789
.ie ta	_		2		-		2		1		4	
ula	1	0.0149	-		-			processing	-		_	*
∍mid ae									1			\$100 m
uatic insects)	5		5		2		5		6		4	
pod a	3	0.1738	3		1	0.0451	2	0.0223	1		· 1	0.0513
ia	21	<0.0005	9	<0.0005	9		8		13	<0.0005	25	<0.0005
era	-		-		-		1.				12 de 1	1. 4.
al organisms	599		275		283		346	Contract State	396	1.45.16	430	
posite Wet Wt.		0.0026		0.0082		0.0005		0.0038		0.0070		0.0079
al Biomass		0.3901		0.0824		0.1282		0.1055		0.1392		0.1514
					,							
						STATI	ON 11	1 1 1 1				* *
					•				•		The Marian	
um salmonis	46	0.0400	53	0.0583	62	0.0574	53	0.0574	59	0.0455	30	0.0433
naeta	31	0.0049	38	0.0083	50	0.0084	47	0.0165	68	0.0184	. 2	
ieta	10	0.0046	2		1		. 3		2		. 1	
ıla	4		10	0.0572	3	0.0276	1		1		-	
midae	_		_							and the second		
matic insects)	1		5		5		4		3		1	
∞d a	1		1		1	0.0531	4	0.2048	-		- N. Jan -	
1a	11	<0.0005	-		. 9	<0.0005	5	<0.0005	11	à.	2	- L.
-ra	-		1		1	1900	-	in Burn			1	
s mercedis	-		-				. •		1		•	e sili
il organisms	104		110		132		117		145		37	A. A.
osite Wet Wt.		0.0058		0.0056		0.0022		0.0170		0.0056		0.000
1 Biomass		0.0558		0.1294		0.1492		0.2962		0.0645		0.0442

ъщ			rab 2 Weight 1	Grab 3 Ho. Weight	Grab 4 No. Weight No	Grab 5	Grab 6
ium naot		0.0078		9 0.0204	3	0.0020	
aeta ula	6.3	0.0049 6	0.0408	3 0.0054	17 2	0.0022	B 0.0112
omid .atic era	insects)	3	0.0006	8 - 0.0013	1		staliai primi Rajia
	rganisms 13			1	23		
		0.0005 0.0132	0.0006	0.0024 0.0295	<u>0.0053</u>	0.0005 0.0047	0.0012

HILLER SANDS
Benthic Samples
September - 1975

		en en disse i <mark>s</mark> en sistematika kan en				1. 3.1
	Grab 1	Grab 2 diameter	Grab 3 💮 🛴	Grab 4	Grab 5	Grab 6
Organism	No./Weight	Ro./Weight	No./Weight	No./Weight	No./Weight	No./Weigl.
		STATION				(4.5):
	Well Experience	DIALIUM		· Projection of the contract o		(제) 원생. 교기 (원) (공
Corophium salmonia	89 0.1589	106 0.2064	79 0.1386	112 0.1547	97 0.1329	103 0.1
Corbicula	为如"别"的一下的"J"	TO HAMOST LAST WAY	A Commence of	Decree Market	nan Santan	At 1
Bottle #1	2 0.1008	3 0.10422	4 0.0900	6 . 0.1218	1 0.0005	6 0.1
Bottle #2			A Commence		5 0.0208	- J
Cladocera Cladoc		的 化多类性等于				Control
Bottle #2						?: 2•
Chironomidae						. 8 * *
Bottle #1	PARTITION TO THE					1.
Bottle #2						1**
Copepod	to service of the	• •			1 1	``-ī•
Neomysis mercedis	and the second	1 ; 1;00;8(3) 3 ;	Tre said to	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	*** - • · · · · *	(1)24/1 (4)4/1 =
Total Organisms	/ 91;/*· · · · · · · · · · · · · · · · · · ·	110	84 (' ' ' ' ' '	119	109	122
Composite Wet Wt.		ું ૄું 0.0005`}}	0.0005		0,0005	0.0
Total Biomass	0.2597	0.3111				0.0
	0.437	0.3111	() 0.2291	** :	0.1547	0.2
	AND ASSETS OF WAR	BTATIO	N 2			70.2
	and all the same	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Oligochaeta	ු 835 🐉 0.5727 🤫	824 0.5461	764 0.4098	860 0.4922	<566 0.3252	754 0.3
Chironomidae	1634 م 81	84 0.1351 🦂	108 0.1556	80 0.1122	78 0.1174	90 0.1
Nematoda	82 🐣		, 76 🕯 🗀 💮	56	版 74 增长 alter	52
Corophium salmonis	49 , 0.0602 *	28 - 0.0342	38 ₹ 0.0544	32 🛴 0.0392	28 0.0336	40 0.0
Corbicula Nemertea	12 11 m	A CANAL		8	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4
Cladocera		William Street			2 and the	2
olychaeta		or and the same				
Neomysis mercedis						2. P
Gastropoda		- 40		2 0.1536		a politica T Notación =
Odonata A Maria	113 0.1542	A Liberty B. S.		"一个"	数5.4 法[G] 数	(x)*{ `-
phemeroptera 🐇 🦠	1 0.0080		34.Fakiri	。		
Total Organisms			1000 🤃	1042	754	942
Composite Wet Wt.		0.0052	0.0126	0.0028	0.0086	, n
OCAL DIOMASS	0.9861	0.7206	0.6324	0.8000	0.4848	

Organisms	Grab No./W	_	Grab : No./W		Grab :	_	Grab (-	Grab ! No./We	_	Grai No.,
Oligochaeta	911	0.4974	1306	0.7462	842	0.4606	647	0.4322	1004	0.5034	9 0i
Corophium salmonis	205	0.2608	156	0.1902	202	0.2770	110	0.1826	152	0.2010	114
Nematoda	80		154		138		75		180		84
Chironomidae	16		26		4		12		8		4
Corbicula	9		8		16		2		14		1.
Polychaeta	2		10		-		3		8		€
Cladocera	-		2		. 2		1		6		
Nemertea	-		-		-		2	0.0271	2		-
Total Organisms	1223		1662		1204		852		1374		1128
Composite Wet Wt.		0.0233		0.0972		0.0376		0.0043		0.0270	
Total Biomass		0.7815		1.0336		0.7752		0.6856		0.7314	
				STAT	ION 3						
Oligochaeta	670	0.1517	440	0.0884	409	0.0731	856	0.2144	923	0.2168	3 51
Corophium salmonis	138	0.1420	122	0.1104	98	0.1099	171	0.1447	172	0.1895	9 3
Nematoda	20		13		27		61		35		13
Chironomidae	8		8		3		7		10		<u>r</u> ,
Polychaeta :	3		6		1		9		4]
Corbicula	7	0.0040	- 4	0.0058	1		3		3		3
. Cladocera	5		3		- 5		4		2		-
Gastropoda			4	0.5826	· 2	0.0587	6	0.0779	<2	0.0850	4
Neceysis mercedis	. •		1	0.0126	-		1	0.0162	-		-
Total Organisms	851		601		546		1118		1151		47 0
Composite Wet Wt.	(X. 13)	0.0072		0.0142		0.0018		0.0292		0.0101	
. Total Biomass		0.3049		0.8140		0.2435		0.4824		0.5014	

٧٤٠

Organisms	Grab :		Grab No./W		Grab :		Grab 4		Grab 5		Gral.
Oligochaeta	348	0.0833	205	0.0418	372	0.0759	491	0.1084	286	0.0605	.; 34 3
Corophium salmonis	7 7	0.0436	77	0.0792	84	0.0718	69	0.0487	80	0.0511	72
Nematoda	11		3		22		13		3		2 .
Chironomidae	1		2		2		3		6		_
Corbicula	2	0.0563	-		4		1		2		2 .
Gastropoda	1		1	0.0042	2	0.0179	2	0.1335	1	0.0533	1
Clado: ra	2		1		3		-		1		1
Total Organisms	442		289		489		579		379		4 21
Composite Wet Wt.		<0.0005		<0.0005		0.0013		0.0008		0.0061	a d
Total Biomass		0.1837		0.1257		0.1669		0.2914		0.1710	
				STATIO	ON 11						
Oligochaeta	228	0.0460	314	0.0707	164	0.0343	385	0.0793	3 93	0.0918	15 5
Corophium salmonis	41	0.0517	66	0.1010	163	0.0343	147	0.0793	39 3 7 7	0.0918	130
Nematoda	41	0.0317	43	0.1010	32	0.1755	36	0.1334	30	0.0073	24
Chironomidae	31	0.0468	31	0.0589	2		3		3		1
Corbicula	8	0.0400	7	0.000	2		2		3		3
Polychaeta	7		4		4		_		<2		1
Gastropoda	1		1		_		3		3		2
Odonata	2		1	0.0362	-		-		1	0.3239	-
Neomysis mercedis	-		-		-		1		3		1
Cladocera	-		-		1		1		1		-
Platyhelminthes	1		-		-		-				-
Total Organisms	. 360		467		368		578		516		317
Composite Wet Wt.		0.0254		0.0201		0.0043		0.0075		0.0445	
Total Biomass		0.1699		0.2869		0.2141		0.2202		0.5481	
¥											
art a											
and the same of th		. 3									
	. 10										

Organisms	Grab No./W		Grab : No./W	_	Grab : No./W	_	Grab (=	Grab ! No./W	_
Corophium salmonis	18	0.0194	9	0.0087	63	0.0826	96	0.1009	33	0.0497
Corbicula										
Bottle #1	1		3	0.3190	3	0.0015	9	0.0076	3	0.0998
Bottle #2	1	0.0020	-		-				-	
Cladocera	4		2		-		4		2	
Chironomidae	1		2	0.0005	-		_			
Oligochaeta	-		-		-		-		1	
Gastropoda	_		-		-		-		1	0.0353
Total Organisms	25		16		66		109		40	
Composite Wet Wt.		<0.0005		<0.0005				<0.0005		<0.0005
Total Biomass		0.0219		0.3287		0.0841		0.1090		0.1853

MILLER SANDS Benthic Samples November 1975

	G	rab 1	0	Grab 2	G	rab 3	∵G	rab 4	G	rab 5	Gı	ab 6
s m	No.	Weight	No.	Weight	No.	Weight	No.	Weight				We1ght
um salmonis	687	0.8655	477	0.4474	47	0.0602	998	1.0796	1412	1.6133	463	0.4817
iaeta	11	0.0082	25	0.0284	_		-		6		1	001,
ila fluminea	7	0.0102	14	0.5854	1	0.0005	22	0.2000	(6) 25*	0.0477	13	0.3 936
>o da ,	.1		-		-		2		2		2	
immarus	-		-		-		4		_		-	
midae	. •		-						1		-	
	706		516		48	2	1024		1452		479	
osite Wet Wt.	, .	0.0026			. 21-			0.0041		0.0098		0.0027
1 Biomass	4,000	· 0.8 865		1.0612		0.0607		1.2837		. 1.67 08		0.87 80
A STATE OF THE STA	enalisário. Per			٠,	. STA	TION 2				* 2		•
um salmonis 🤫	168	0.1700	183	0.2580	114	0.1416	214	0.2634	· 250	0.3888	142	0.1394
aeta	907	0.7902	841	0.8239	884	0.3529	1022	1.0802	7910	0.7542	754	0.5650
eta 🦸 🤼 📆	, 1				V. 30						• .	
ila fluminea 🛸	·: 14	~°0.0308	10	0.0031	: 16 °	•	26	_	18	, a 📥	14	_
midae , dig	63	0.1444	48	0.2032	18	-	44	0.0970	34	0.1080	22	0.0371
	1	-	1	. : -	2	0.3096	2	-		•		,
la tout the		<0.0005	32	: -	14		30		20	-	16	_
s mercedis	. 1	0.0115										
ummarus			1 .	0.0044							. • •	
l Organisms [1]	182		1116		1038	1	1338		1232		948	
osite Wet Wt.	1300	0.0166		0.0054		0.0258		0.0314		0.0062		
1 Biomass	, ado	1.1640		1.2980		0.8299		1.4720		1.2572		0.7419

		rab 1		rab 2	G	irab 3	G	rab 4	C	Grab 5	G	rab 6
ınism	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weigh
ophium salmonis	577	0.5246	435	0.4717	505	0.4078	473	0.4977	387	0.3950	572	0.3 8r
iochaeta	38	0.0184	89	0.0368	26.	0.0178	6	0.0035	89	0.1004	32	0.01
picula fluminea 🛒	13	0.0103	18	0.0071	14	0.0072	19	0.0200	18	0.0143	26	0.0
ropoda	. 1	- S							1	0.9875		•••
a * San	1		1									
itoda			5	. 🕳	-				4	-	1	•
ochacta,	***	•	1	-							- -	
		8	11	-1.								•
total Organisms	630	3.	549		545	in the state	498	£	499		631	
omposite Wet Wt.		2 0.0021		0.0181	1.0	0.0072		<0.0005		<0.0005		4.5
otal Biomass		0.5554		0.5337		0.4400	20 0 6	0.5217		1.4977		0.4
11 11/21/15		And to				Quality of the				1.1	e indigen	
	12/4	100	1 k	284 373	- STA	TION 8			M.			
	4.4.				W.	raph or that 🖔	يورون الآلوين موسات مصر			- Park	1	E to to
phium salmonis		D.2638	391	0.2968		0.3853	340	0.4765	368	0.2778	185	0.17
ochaeta	· 73	.0.0540	182	0.0898	£ 14779	0.1144	246	0.1826	109	0.0708	50	0.04
chaeta , , , , , , , , , , , , , , , , , , ,		traffice d			P. 1307				۱ 🖈		314	** .
icula fluminea	13	0.0385	୍ର 14	0.0655	* 18	0.0230	11	0.0127	16	· 0.0454	. 9	0.02
onomidae	2	·····································	. 2	No.	2	19 ···· · · · · · · · · · · · · · · · ·	4	0.0097	: 3 J.	in agreement to the second	1	
roroda	# X = A		. 3	0.0331	-	•	- -	`a_*\disc? !?≠ `;	·/- 3	0.0733	3	0.04
toda	3		. 1	` ?>= .;	₩ -		A.1		* :-	i nga katangan 🗕 .		
sis	No.	No control of				-	· 🚗 🧳	- C	. 1		4 j. 3 🕳	27
	Acres 64	6 % Z					1. 12 South	The second second	وأساع لأسوا	- AY		10
ntal Organisms 🦠	₹400 √	S. Carlotte	594		7495		602	tana and	501	14. St. 1	248	
mposite Wet Wt.		0.0034		0.0036	11.	<u>0.0051</u>		<0.0005		0.0042		0.00
and the same of	14 m	0.3597		0.4888	and the	0.5278		0.6820	da S	0.4715		0.28
20 40 360	STATE OF	3 Sept. 3862 14 18 11	The state of the s		1.0	the state of the state of	5 9 5 4					

	Grab 1		G	rab 2	G	Grab 3	G	Grab 4	Grab 5		Grat	
rga nism	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	W
erophium Salmonis	272	0.2784	349	0.3696	372	0.3423	251	0.1964	349	0.3762	400	į.
⊃logochaeta	20	0.0045	14	0.0040	51	0.0144	36	0.0104	61	0.0152	213	(-
corbicula (***	11	0.0375	7	0.0778	5	_	6	0.0106	10	0.3028	5	()
astropoda -	. 1	_	1	-	2	0.1964	2	0.0230			3	Ü.
comysis.	2	0.0119	1	-								
hironomidae			6	0.0093	10	0.0302	- 5	0.0122	9	0.0303	7	() ,
Polychaeta	3.00				1							
lematoda	t.				2						2	
Total Organisms	306		378		443		300		429	•	630	
Composite Wet Wt.	فالمدارة والأراق	0.0101		0.0091		0.0069		0.0122				<q,< td=""></q,<>
Total Biomass		0.3424		0.4698		0.5902	**.	0.2648	i i	0.7254		().
	eren i jarren da. Tarren da arren da.	. *	3.2	Q† S		1.0					1000	
					STI	ATION 11 F) *(·),					
orophium salmonis	42	0.0485	51	0.0530	67	0.0655	29	0.0242	- 20	0.0248	23	0.
orbicula	7	∱., •••	1	<0.0005	4	.*· 0.012'3	·	0.2713	3	<0.0005	. 1	
hironomidae	(v1	-	es.	jan er en	4.4 2.4	*		1.5			1	
astropoda	1 1	a			for a		4	1.4			•	
ohaustorius	A Park								T.		**	
Washingtonianus	1 1	•			1	0.0028	e established		, N		1	
olychaeta					n e	u Laggerate Talanca #ilo	1	0.0007			1	
Total Organisms	52		52		72		32		723		27	
Composite Wet Wt.		0.0055	C.				4-3		Add to			Ω.
Total Biomass		0.0540	Jan 1 18 -	0.0535		0.0812	- Ma	0.2962	e de la	0.0253		O

	Grab 1		Grab 2		Grab 3		G	rab 4	G	rab 5	0	Grab
gan ism	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weignt	No.	Wer
rbicula	4	0.0069	17	0.0049	21	0.0204	9	_	12	0.0143		
rophium salmonis			6	0.0057	603	0.7751	-			0.0143	6	
igochaeta			•	0.0037			597	0.8025	778	0.8290	607	0.
lychaeta					292	0.2312	1165	1.3061	1283	0.9037	1162	1.0.
ironomidae					1	0.0591	1	-	1	_		
					7	_	15	_	13	-	14	
stropoda					1	-			1	_		
e-moptera							1	_				
mprey							1	0.0303				
matoda ***									1			
Total Organisms	4		23		925		1789		2089		1789	
Composite Wet Wt.	2 25 5	-				0.0156		0.0297	2009	0.0084	1/09	ا دان مΩ
Total Biomass	4	0.0069		0.0106		1.1014		2.1686		1.7554		1 (

MILLER SANDS Benthic Samples January 1976

	_		Grab 2 Grab 3				rab 4	Gı	ab 5	Grab ←		
rgan ism	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Wei:
orophium salmonis	198	0.2462	214	0.2297	393		126	0.1650	141	0.2427	295	0.41
ligochaeta	2		-		2	0.0015	_		4	0.0073	5	0.00
orb icula	(3)13	0.3052	8	0.0048	17	0.3180	(5) 6	0.0047	3	0.0005	6	0.0
hiron omidae	15		-		1		-	0.0047	-	0.0003	-	0.0.
emat oda	-		-		_		_		_		2	
istro toda	-		(1)2	0.0057	-		1		-		-	
Total Organisms Composite Wet W	228 t.		224		413		133		148		308	
Total Biomass		0.5514		0.2402		0.3195	•	0.1697		0.2505		0.4
The state of the s					ST a t	ION 2						
orophium salmonis ligochaeta orbicula	2 is 2 3 *6	0.0029 0.0008 1.7897	7 51 . , 2	0.0090 0.0628 0.0208	12 - 41 - 1	0.0234 0.0741	1 -	0.0011	2	0.0026	6 95 1	0.01 0.13
omysis	i		1		1		1	0.0037			. <u>1</u>	0. 091
Total Organisms Composite Wet Wi Total Biomass	11	1.7934	61	0.0926	55	0.0975	6	0.4366	2	0.0026	104	ð. <u>24</u> - 1
					· 通過數學 · · · · · · · · · · · · · · · · · · ·					gent in der State (1965) Teknischer Gerichte State (1965) State (1965)		

STATION .

	Gr	ab l	Gı	rab 2	Gı	ab 3	Gı	cab 4	Gr	ab 5	G	r al
Organism	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	₩.
Corophium salmonis	296	0.4492	216	0.4220	316	0.5384	256	0.4592	320	0.5376	276	
Oligochaeta	2804	3.0976	2300	2.2600	3172	4.2180	1744	1.3728	1648	1.2000	4028	
Corbicula	48	0.0692	8		20		24		4		20	
Chironomidae	204	1.0048	236	1.2612	140	0.6044	136	0.3732	116	0.7240	276	ì
Nematoda	320		216	0.0020	240		288		260		516	
Neomysis	4	0.0920	-		-		_		-		_	
Gastrotoda	-		-		-		· -		4		_	
Polychaeta	-		-		-		<u> </u>		-		4	4
Anisogammarus	-		4		-		~;· _		-	•	-	
Total Organisms	3676		2980		6732		2448		2352	,	5120	
Total Biomass		4.7128		3.9452		5.3608		2.2052		2.4716		·i
•					STAT	CION 3						
Corophium salmonis	362	0.2953	304	0.1983	253	0.1922	270	0.2088	285	0.2107	192	0
Oligochaeta	393	0.4271	461	0.4057	172	0.1325	168	0.1402	515	0.6178	214	()
Corbicula	14	0.0255	16	0.0560	20	0.0560	18	0.0800	19	0.0546	7	ſ
Chironomidae	4	0.0141	6		-		2		3		2	
Nematoda	1		4		2		-		1		1	
Neomysis	-		-		-		-		-		1	1 -
Gastrotoda	1	0.8241	2	0.0182	3	0.0433	3	0.0781	-		1	1.
Polychasta ***	·		-		-		-		2		-	
Plecoptera	1	0.1381			• • • • • • • • • • • • • • • • • • •		-		-		-	
Total Organisms Total Biomass		1.7242	793	0.6782	450	0.4240	461	0.5071	825	0.8831	418	

	Grab 1		Grab	Grab 2		3	Grab (4	Grab !	5	1 : 1
Organism	No. W	eight	No. W	eight	No. W	eight	No. In	eight	No. W	eight	13
Corophium salmonis	401	0.4554	302	0.4135	351	0.4262	535	0.5661	413	0.4355	255
Oligochaeta	145	0.0977	94	0.0748	94	0.0920	203	0.2022	116	0.1239	1
Corbicula	11	0.0155	9	0.0256	3	0.0051	14	0.0342	7	0.0113	
Chironomidae	1		1		1		1		-		
Neomysis	2	0.0169	3	0.0183	_		-		-		
Gastropoda	1	0.0499	3	0.0332	-		1	0.0098	2	0.0217	
Total Organisms	561		412		449		754		538		41
Total Biomass		0.6354		0.5654		0, 5233		0.8123		0.5924	
				STATI	ON 11			•			
Corophium salmonis	1557	1.1483	1530	1.4119	1373	1.3398	1561	1.3054	1426	1.2848	14
Oligochaeta	35	0.0171	39	0.0233	23	0.0213	38	0.0296	13	0.0205	:
Corbicula	31	0.0316	25	0.0644	31	10.0139	27	0.0600	25	0.1308	
Chironomidae	, 1		_		-		2		-	•	
Neomysis	· -		-		2	0.0295	1	0.0053	-		
Anisogammarus	_		1	0.0232	1		-		-		
Gastropoda	-		-		1	0.0046	2	0.0010	-		
Total Organisms	1644		1595		1431		1631		1469		15:
Total Biomass		1.1970		1.5228		11.4091		1.4013		1.4361	

	Grab 1		Grab 2 Grab 3			Gz	ab 4		Grab 5		ab 6	
. am	No.	Weight.	No.	Weight	Mo.	Weight	No.	Weight	No.	. Weight	Ro.	Weight
.ium Salmonis	1		6	0.0087	. 3	0.0022	, 4:	0.0047	- 1	0.0024		0.0010
rhaet a	1		-			3 W. 4		objet og engligt	•			
u al	5	0.0138	6 :	0.0077	. 6	ੰ'0.0082	. 5	0.0004		0.0016	1	
.omidae	٠.		1			Control of	\$32° , €13	ki maki d	:		1	
ਅ ia	-	544	- 4	18. 大学	ANN AND A		796 had 1					
9 98	90	0.0479	670	0.0387	26	0.0070	121	0.0716	60	0.0265	. 37	0.0192
al Organisms	97	COS SA	683	130	*** *** 24		130		6	A TOP	41	
al Biomass		0.0617		0.0551		0.0174		0.0767	Digital Control	<u> </u>		0.0202

MILLER SANDS Benthic Samples March 1976

GI STA	cab 1	Grak	2	Grab 3 Grab 4 No. Weight No. Weight				Gz	ab 5	Grab 6		
			1	(2) (3) (3)	建筑			1	Weight	No.	Weight	
nium salmonis 🦪 83	0.1818	45 (0.0878	80	0.1785	56	0.1152	3	0.0060	25	0.0492	
haeta 1	A SHOW TO		WINDS	. 1	授 编数线			2		Šr. 🖺 👝	de at	
ula A A S S S S S S S S S S S S S S S S S		*		(i) -				2		100		
omidae		•	1000) <u> </u>	A MARKET	1		?*/.~ - .		SER FR		
toda 1	0.0399					rti i a <u>at</u> ireati 140 aastori		-				
					Market 1			48	0.0169	1. ·		
al Organisms 86	45 1 670	45	24 A	80	97.74.7°	57		53		25		
al Piomass	0,2217		0.0878	Paris :	0.1785		0.1152		0.0229	X437	0.0492	
	4.4.4.4.5.T	69 (17) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15		100	W. Craw Cil		71 1 2 2 2 1 1			the contract	0.0492	
	77.169.180		2.0	STAT	ION 2	10	ers the follow		Table 1	NOTE:		
ium salmonis 3 105	D_1389	SA (1.0512	71	n nasa		D OSSO	144	0.0471		0.0503	
hacta	0.0245	415	.4219	416	0.3682	328	D. 2667	263	0.3501	131	0.0303	
ula 3 2 2 3 2 8	0.0166	/: /: 3	to the state of	.4` × 3 °	0.0094	: 10 ·	3.7775	3 4 7	0.0125	5	0.0175	
omidae 2 2	A Land Class	2 6	The same	2	the state of	1:1:	Y TABLE	C. 3		1	0.0025	
da // / / / / /	N. SERVE		425.4	1,,,1						(h -	7. (1) 7. (1)	
18		-		7		1				3.4	8 A.S.	
toda	. 0.3603			70.1		A	er Africa					
178	. 714 25	,	17.72					148 -				
	A. A.		V 12.74		Acres 1			12.0		Service Service		
il Organisms / 190	- 41 W.	480 **		494		395	To the lates	312		178		
1 Biomass	0.5403	3.7.150	. 4731	Martin and	04635		# 1000 S	Kazara Kazara	0.4007		0 1642	

	\$	Sa Palificación o	ani s	pakeahi a	STATIO	l See See See See See See See See See See	X					
	Gr	ab 1	Gı	rab 2	endraner o	m 3. rab 3	G	rab 4	G	rab 5	G	rab 6
1 510. 1/4/4 1/4	No.	Weight	, No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight
nium salmonis	580			0.2708	384	0.2996		0.4404	496	0.3180	(57)	0.3778
haeta	. 300	0.3396	488	0.4948	172	0.1852		O.4632	22	70.000	219	0.3322
cula	36		. 20 4	ALC: VI	S 8 ∵		. 16		25 7	0.2289 0.0133	19 1	11.5990
oda Maria	4 60 1		24		÷: 20		36		10		$\mathbf{\hat{i}}$	
toda			* * * - -		(1) -				3	0.0187		
tern 7.)					14.4				A section	1	
79 8		day day							. 2			
al Organism	976		- 924		584	. (2)	1324	1. TO	565		733	10.00 m
al Biomass	111	0.6796	4.5	0.7656	William Branch		1.00	0.9036	A TOP TO A SECOND	0.5789		12.3090
i vina			AND THE		articles and	ALC: WALLOW		Alex Charles				12.3090
		1. Mar. 1.			STATIO	N 435∞					*	
ium salmonis	364	Ú.5828	332	0.3536	448	0.6318	272	0.4948	264	0.3013	304	0.3744
haeta	772	0.7436	792	1.0592	N 791 2	1.1672	1/2	0.7432 🐧	539	0.8989	484	0.8448
ula 🦂 💃	ું,28	·	्र _ू 28े	0.1024	100	0.3092		~_0.0248 }	√.∵ 26	0.0661	60	0.1852
omidae	20		24	in the second	20	Agentini,		- 0.0528	8	0.0181 0.0005	16 40	
da ammarus	100 %		60∵		32 3. A		164		31 	1.0003	1	
toda A		174.00	. 4			Walter.	70 - S		大百十分的 No. 15	0.0196	Part S	
seta 💮 🛴	12				. ∴ 8		•			11 44 1	8	
tera 🦸 💯	7	$\sim 2 G$	er e		- 4				73 .			
190					. 12	and William	∴ 36					
170	***						-XXXII		Wan		A Park	的特殊
il Organisma	1300	4 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1240		/ 1491	arthur de de	1332		871	7/4/77.05-3	912	
1 Biomass		1.3264	40	1.5152		2.1082	14	1.3156	800	1.3045	Tox.	1.4044
		SUZNI MATERIA	100	THE CAN		The state of the		ALL OR	and the second	美数和公司	1 6	

4.00	1	ATI			-
· 1	. 37	'ATI	ON	1	Ο.

	· Grab 1 · w	Grab 2	Grab 3	Crab 4	Grab 5	Grab (
Organism Ye	. No. Weight	No. Weight	No. Weight	, No. Weight	. No. Weight	No. We:
Corophium malmonis	494 0.3520	494 0.3882	476 0.3582	724 75.4128	514 0.2920	496 0.
Oligochaeta	. B	0.40 miles - 10 miles	56.3	63 0.0313	36 0.0104	22
Corbicula (a.)	🔀 7 👙 0.0268	6	1.7 0.0639	51 0.0610	295 0.0276	25 - 0.
Chironomidae * *	1.6.1	1	2 (3) (4) (1)	4	13 TAN	7 0.
Nematoda (1)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 * 2 (8) (7)	ikan⊾ oo ka ka	• 40.40	9 0.7706	10
Gastrotoda	%⊹y.6 ° 0.4982∘	5 0.4619		* 6	A STATE OF THE STA	% 3 0.€
Plecoptera U						
Tan Eyy					To water the state of	su (1 et ≰ 1 de versión de de
Total Organisms	519 × 5	516	529	848	587	565
Total Biomass	્રેડ જોએ જ 0.8770 -	0.8501	0.4402	0.5051	1.1006	0.
		at her hist	FTATION 41		do William Comme	
				en izenten en en		
Cortohium salmonis	The second of th	7 52 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			2614 2.5900	1358 1.
Ologochaeta					Day to the second of the secon	ું 68 ે 0.∈
	34 📉 0.0208	.;;/18 // O.0120 °	18 0.0136	18*,,0.0162	🗼 30 🦟 D. 0254 👙	∵10 0.⊄
Chironomidae				2		
Gastrotoda S	10 (0.1540		8 0.2262		2 0.0226	
Fish Bogs		is Torrestation				
Total Organisms	2426	1998	2522	1977	2756	1440
Total Biomass 😗		2.4050	3.1246	2.2630		3, 1
		A Million of B				

STATION SI

	Gı	ab l	Gı	ab 2	Gr	ab 3	G	rab 4	Gr	ab 5	Gı	rab ·
Organism	No.	Weight	No.	We:								
Corophium salmonis	6		4		1		6	0.0123	3	0.0060	2	
Corbicula	4	0.2400	5	0.0074	4	0.0022	6		2		4	
Chironomidae	1		4		1		_				_	
Fish Eggs	205	0.0973	157	0.0690	55	0.0226	102	0.0443	48	0.0169	118	0.
Total Organisms	216		170		61		114		53		124	
Total Biomass		0.3373		0.0764		0.0248		0.0566		0.0229		0.0

MILLER SANDS Benthic Samples May 1976

STATION 12

		rab 1		ab 2		ab 3		ab 4		ab 5		ab (
Organism	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weı •
Corophium salmonis	73	0.1661	79	0.1602	41	0.0932	12	0.0334	121	0.2257	67	0.1
Oligochaeta	-		1		_		1		11		34	
Corbicula	-		-		-		_		9	0.5595	4	
Chironomidae	9		12	0.0012	1		·-		1		1	
Anisogammarus	-		2	0.0149	-		-		-		-	
Total Organisms	82		94		42		13		142		106	
Total Biomass		0.1661		0.1763		0.0932		0.0334		0.7852		0.1
					STAT	TION 2					•	
Corophium salmonis	8	0.0096	8	0.0200	7	0.0093	11	0.0216	14	0.0287	7	0.00
Oligochaeta	5	0.0056	2	0.0011	5	0.0020	70	0.0079	5	0.0178	16	0.0
Corbicula	2	0.0009	-		-		1		-		-	
hironomidae	-		-		-		1		-		-	
Yematoda	2		-		-		-		-		-	
Total Organisms	17		10		12		20		19		23	
Total Biomass		0.0161		0.0211		0.0113		0.0295		0.0465		0.

STATION 5

	Gı	rab l	Gı	rab 2	Gr	ab 3	G	rab 4	Gr	ab 5	Gr	ab ,
Organism	No.	Weight	No.	Weight	No.	Weight	No.		No.	Weight	No.	We:
Corophium salmonis	153	0.2501	152	0.2828	122	0.1730	152	0.3208	224	0.2880	123	0.:
Oligochaeta	702	0.3702	1344	1.4012	605	0.5511	623	0.6014	908	0.9704	334	0.
Corbicula	21	0.0354	8		14	0.0468	11	13.6997	20		7	0.
Chironomidae	7	0.0096	8		7	0.0124	9		28		11	0.
Nematoda	153		592	0.0044	168		132		340			
Neomysis	-		-		1		-		_		112	
Ga strotoda	1	0256			_		_		-		1	0.4
Platyhelminthes	1	0.0264	-		-		_		-		_	•
Plecoptera	1	0.0198			(1)2	0.0086	1	0.0340				
Total Organisms	1039		2104		919		928		1520		588	
Total Biomass		2.0371		1.6884		0.7919	320	14,6559	1310	1.2584	300	1.
		_,		_,	STAT	rion 3						
Corophium salmonis	62	0.0847	146	0.0976	88	0.0476	117	0.1094	82	0.1041	83	0.1
Oligochaeta	13	0.0249	64	0.1584	57	0.1752	31	0.0907	60	0.1087	23	0.
Corbicula	6		8		9		8		6	01200.	4	0.6
Chironomidae	1		5		7		2		ì		ī	
Nematoda	7		33		20		38		25		10	
Neomysis	1		_		1		_		_		1	
Gastrotoda	5	1.2496	3	1.1608	7	0.6640	6	0.1415	2	0.0965	5	0.1
Total Organisms	95		259		189		202		176		122	
Total Biomass		1.3592		1.4168		0.8868		0.3416	_, •	0.3093		0.3

:

STATION 10

Gı	rab l	Gı	rab 2	Gr	ab 3	Gr	ab 4	Gr	ab 5	Gı	rab (
No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	Weight	No.	₩e ı
43	0.0970	50	0.0948	37	0.0566	37	0.0411	27	0.0691	13	0.0.
8	0.0093	28	0.0180	7	0.0061	36	0.0623	12	0.0225	2	
6	1.2116	5	0.0119	5	0.2373	7	t 8192	8	5.6914	6	
1		3		2		4		1		1	
10		21		12		11		_			
-		1		-		1		-		_	
-		-		-		1	0.0301	1		-	
68		108		63		97		49		27	
	1.3179		1.1247		1.3000		6.9527		5.7830		0.0
				STATIC	N 11						
120	0.1319	125	0.0915	167	0.1883	111	0.1221	99	0.1963	98	0.1
135	0.2094	119	0.1424	91	0.2058	85	0.1214	127	0.3489	82	0.1
4		12		11	0.0279	8	0.0402	2		8	0.04
17	0.0126	11	0.0053	11		10	0.0073	3		8	
2		-		-		2		-		1	
2	0.0224	3	0.1779	-		2	0.1548	4	0.0904	-	
-		-		1	0.0213	-		-		-	
334		347		334		244		257		227	
	0.3763		0.4171		0.4433		0.4458		0.6356		0.4
	No. 43 8 6 1 10 - 68 120 135 4 17 2 2 -	43 0.0970 8 0.0093 6 1.2116 1 10 - 68 1.3179 120 0.1319 135 0.2094 4 17 0.0126 2 2 0.0224 - 334	No. Weight No. 43 0.0970 50 8 0.0093 28 6 1.2116 5 1 3 10 21 - 1 - 68 108 1.3179 120 0.1319 125 135 0.2094 119 4 12 17 0.0126 11 2 - 2 2 0.0224 3 - 334 347	No. Weight 43 0.0970 50 0.0948 8 0.0093 28 0.0180 6 1.2116 5 0.0119 1 3 10 21 - 1 - 1 - 68 108 108 1.3179 125 0.0915 135 0.2094 119 0.1424 4 12 17 0.0126 11 0.0053 2 0.0224 3 0.1779 - 334 347	No. Weight No. Weight No. 43 0.0970 50 0.0948 37 8 0.0093 28 0.0180 7 6 1.2116 5 0.0119 5 1 3 2 10 21 12 - 1	No. Weight No. Weight No. Weight 43 0.0970 50 0.0948 37 0.0566 8 0.0093 28 0.0180 7 0.0061 6 1.2116 5 0.0119 5 0.2373 1 3	No. Weight No. Weight No. Weight No. 43 0.0970 50 0.0948 37 0.0566 37 8 0.0093 28 0.0180 7 0.0061 36 6 1.2116 5 0.0119 5 0.2373 7 1 3	No. Weight No. Weight No. Weight No. Weight 43 0.0970 50 0.0948 37 0.0566 37 0.0411 8 0.0093 28 0.0180 7 0.0061 36 0.0623 6 1.2116 5 0.0119 5 0.2373 7 t 8192 1	No. Weight No. Weight No. Weight No. Weight No. 43 0.0970 50 0.0948 37 0.0566 37 0.0411 27 8 0.0093 28 0.0180 7 0.0061 36 0.0623 12 6 1.2116 5 0.0119 5 0.2373 7 t 8192 8 1	No. Weight No. Weight No. Weight No. Weight No. Weight 43 0.0970 50 0.0948 37 0.0566 37 0.0411 27 0.0691 8 0.0093 28 0.0180 7 0.0061 36 0.0623 12 0.0225 6 1.2116 5 0.0119 5 0.2373 7 18192 8 5.6914 1 3 2 4 1 10 21 12 11 - - 1 - 1 - - 1 0.0301 1 68 108 63 97 49 1.3179 1.1247 5 1.3000 6.9527 5.7830 STATION 11 120 0.1319 125 0.0915 167 0.1883 111 0.1221 99 0.1963 135 0.2094 119 0.1424 91 0.2058 85 0.1214 127 0.3489 4 12 11 0.0279 8 0.0402 2 17 0.0126 11 0.0053 11 10 0.0073 3 2 - 2 - 2 - 2 0.0224 3 0.1779 - 2 0.1548 4 0.0904 - 1 0.0213 334 347 334 244 257	No. Weight

STATION SI

	Gı	rab 1	Gı	cab 2	Gı	cab 3	Gı	ab 4	Gr	ab 5	Gr	ab €
)rganism	No.	Weight	No.	Wei:								
Corophium salmonis	15	0.0241	18	0.0358	26	0.0517	26	0.0395	28	0.0422	18	0.0.
Corbicula	7		5	6.4023	7		11	0.0158	23	5.0936	1	
Chironomidae	1		3		5		9		9		2	0.00
Anisogammarus	_		_		_		1	0.0051	_		_	
Polychaeta	2	0.0103	2	0.0476	-		1	0.0068	-		-	
Total Organisms	25	•	28		38		48		60		21	
Total Biomass		0.0344		6.4857		0.0517		0.0672		5.1358		0.0

APPENDIX B10: MACROINVERTEBRATE, TAXA IN ORDER OF MEAN ANNUAL ABUNDANCE FROM ALL STATIONS AT MILLER SANDS, OREGON, JULY 1976 - JULY 1977

```
LIVE CLASSES
                     e sai Tresse - Markey Commander (n. 18<mark>12) (1845)</mark>
                                                                          ARGO GASTRO OLO FOLTOFALIE
. 10
           ALLEST TO ASSOCIATE THE METONS OF ALIGHT OF RESONE TO RESORT
                                                                                 THE METCH I WE ALTERT BU VETTIL BE SETTING IT .
                    15 0.0000
                                                                                  \mathbf{u} \mathbf{u} \mathbf{n} \mathbf{r} \mathbf{u} \mathbf{e}
      1 4 0.0010
                                 6 J. C. UL
                                                                                                                        n Bittoud
                                              1 0.6666
                                                         0 0.0006
                                                                      d n.undo
                                                                                               0.00,0000
                                                                                                           U U. CILL
 11.
                                 1 4.0000
                                                                      0 0.0000
                                                                                  0 0.0060
           0.0029
                    at U. Ulius
                                                                                                                       0 0.0000
      1 4
                                              6 0.9869
                                                          U 0.0000
                                                                                               0.00006
                                                                                                           J 4.6111
 110
      1 :
           L. 0012
                    15 0.0002
                                  2 0.000
                                                          1 0.0000
                                                                      0 0.0000
                                                                                   U U.P600
                                                                                               0 0.0002
                                                                                                           1 0.1111
                                                                                                                                    U U
           1,0076
 17.
        1
                    E4 0.0003
                                 77 U. CUDU
                                              0 6.0060
                                                          1 0.0000
                                                                      6 0.0060
                                                                                   € 0.000€
                                                                                               0.0664
                                                                                                           5 U.CILL
                                                                                                                        п
                                                                                                                         0.0000
                                                                                                                                    0 .
 176
                                .1 0.0000
                                                                                                                        n r.unca
      1 6
           6.0176
                    51 0.00.7
                                              6 6.6000
                                                          6 0.0666
                                                                      ս Օ.սրեր
                                                                                   6 0.9666
                                                                                               U 0.96.00
                                                                                                           U U.L.L.
                                                                                                                                    ί.
 110
      ; 3
                    27 0.0021
                                                                      u 6.0000
u 0.0000
                                                                                   u u nnou
                                ec. U. CUUL
                                                                                                                          o_unug
                                                                                                                                    \hat{\upsilon} \sim .
           L. 461.2
                                              1 0.0000
                                                          1 0.0066
                                                                                               0 0.0000
                                                                                                           2 0.1116
 176
           6.0000
                     1 0.05+5
                                C3 0.0001
                                              6 0.0001
                                                          3 0.0066
                                                                                   0 0.06cc
                                                                                               J u.nuco
                                                                                                           u c. rice
                                                                                                                          0.0000
      5 4
                                                                                                                                    0 ...
116
            ...0000
                                                          2 0.0000
                                                                      u u.wnuu
                                                                                   D 0.0000
                      0 0.0100
                                 LU 0.^00I
                                              7 0.6666
                                                                                               0 0.0001
                                                                                                           3 6.1166
                                                                                                                        В
                                                                                                                          0.0000
 11e
      3 3
           0.0000
                     0 0.0215
                                 10 0.0005
                                             16 6.6034
                                                          4 0.0000
                                                                      u 0.unu6
                                                                                   ∪ ∪.00,01
                                                                                               U 0.0009
                                                                                                           o U.IILL
                                                                                                                        r
                                                                                                                          0.0000
                                                                                                                                    υ ...
 175
                    70 0.0002
                                17 0.7006
5 0.7006
                                                                                                           1 0.1117
           6.0095
                                                                      0.00000
                                                                                               0 0.0666
                                                                                                                         r.0000
                                                                                                                                    b . . .
      4 i
                                              1 5.6768
                                                          4 6.0006
                                                                                   6 ULDCCL
 17 c.
           0.0641
                    68 B.0024
                                              6 1.0000
                                                                      1 0.0000
                                                                                   0 0.0000
                                                                                                                          1.6060
      4 6
                                                          1 0.0619
                                                                                               1 0.4066
                                                                                                           1 babatt
                                                                                                                                    U . .
                                 . 0 0.0000
                                                                                                                         0.0000
                                                                                                                                    0 .
 17ti
           0.0025
                    45 0.0001
                                              6 6.6660
                                                          2 0.0000
                                                                       0.0000
                                                                                   0 0.4902
                                                                                                 J.0000
                                                                                                           U L. Gale
 17c
            0.0002
                                             á5 0.6660
                                                                       J 0.000
      6 1
                     6 A.UL46
                               164 0.0024
                                                          0.0000
                                                                                   0 0.0000
                                                                                                 u.beue
                                                                                                                        .
                                                                                                                          0.0000
                                                                                                                                    υ..
                                                                                                           4 6.1111
      5 z
5 3
 112
            0.0661
                     < 9.0273 1/2 0.065
                                             34 6.2635
                                                          e ......
                                                                      0.0066
                                                                                   0 0.0066
                                                                                               0.0.0000
                                                                                                                        1 0.0000
                                                                                                                                    U U.
                                70 0.0000
74 0.0784
                       0.0000
                                                                                                                          C.Canu
                                                                                   0 0.0000
           6.0002
                                                                      0 0.41160
                                                                                               4 G. 4666
                                                                                                           6 6.((()
                                             26 0.0000
                                                          4 ......
                                                                                                                                    0 J.
                    93 0.0071
                                                                                                                          0.0060
      + 1
            0.4167
                                                                       1 0.0000
                                                                                   U U. naks
                                              1 (.0616
                                                          6 0.0000
                                                                                               1 0.0000
                                                                                                           1 6.1110
                                                                                                                                    0 U.
                                                                         6.0006
 170
            0.0629
                   112 0.00ac
                                 27 0.0000
                                              6 6.6066
                                                          2 0.0000
                                                                                   0 0.0666
                                                                                                 .....
                                                                                                                          0.0000
            U. JUE 1
                                 9 0.000
 77 ..
        .5
                    80 G.0014
                                              0 6.6000
                                                          2 0.0000
                                                                       0.0000
                                                                                   U 0.0666
                                                                                               Ü
                                                                                                 0 6.1166
                                                                                                                          0.0000
                                                                                                                                    0 6.
 777
      7 1
                                                                                                                          0.0000
                    67 0.0049
                                              U 0.0000
                                                                       0 0,4000
                                                                                               1 0.0000
           U-6121
                                                          1 0.0606
                                                                                   U U.11:97
                                                                                                           U U. ( ) ( L
                                                                                                                                    0 .
                                  B 0.0000
                                                                                                                          0.0000
 116
                     7- 0.05+2
                                              £ 1.0004
                                                                       u clunus
                                                                                   0 0.0755
                                                                                               2 0.0000
            U. U134
                                                          1 0.0606
                                                                                                           U U.OLLL
                                                                                                                                    υ о.
 77e
                                                                         u.unua
                                                                                               1 J. GOP6
      7 5
            U.UU57
                     ef O.uvel
                                  / 0.0000
                                              U U.CGUL
                                                          6 0.0000
                                                                                   0 0.0002
                                                                                                           U U. bitt
                                                                                                                        n n.0040
      e^{-1}
            L.0615
                                                                                                          10 0.6.60
 112
                     34 0.0025
                               115 0.0000
                                              6 6.6061
                                                          3 0.0006
                                                                       0.0160
                                                                                   U 0.0000
                                                                                               0 0.9664
                                                                                                                        # 0.500U
                                                                                                                                    G C.
                                .. 0.000
74 0.000
 11+
                                                                       U U. VORO
                                                                                   0 0.0006
                                                                                                                          0.0000
      }· •
           1.0026
                     12 2.0200
                                              U L. UUL1
                                                          3 0.0666
                                                                                               O BERGE U U
                                                                                                           5 U. LILL
                                                                                                                                    U L.
 11c
      د ن
           U.UU/3
                     35 0.0511
                                              0 0.0002
                                                                       U C. UNUU
                                                                                   0 1.3693
                                                                                               a 0.0033
                                                          3 0.6000
                                                                                                            9 0.1111
                                                                                                                                    ( · · · ·
 776 9 1
            0.0003
                     0.0600
                                  6 v.nubu
                                              0 0.0071
                                                           2 0.0000
                                                                       u d.u6c0
                                                                                   0 0.0666
                                                                                               u 0.0000
                                                                                                            U U. Pill
                                                                                                                        r n.unuu
                                                                                                                                    οι.
            L.0003
 176
                      5 0.0000
                                  0 0.0000
                                              0 <.3522
                                                          5 0.0000
                                                                       0.0000
                                                                                   0 0.0101
                                                                                               0 0.0000
                                                                                                            U U.Fill
                                                                                                                        < 6.00en
                                                                                                                                    θι.
 170
      5 4
           しょしけしと
                      3 0.0000
                                  0 0.000
                                              U U. UEEE
                                                          1 0.0006
                                                                       0.0000
                                                                                   0 0.0000
                                                                                               0 0.0000
                                                                                                           O U.CILL
                                                                                                                          0.0000
                                                                                                                                    d t.
 776 16 I
                     54 0.US/6
                                1.9 0.0011
                                                                       2 0.0000
                                                                                   U 0.0600
                                                                                               6 0.0067
                                                                                                                          0.6000
            U.0043
                                                          0.0010
                                             it u.bbub
                                                                                                           9 0. (...
                                                                                                                                    υ.
                     49 0.0542
                                                                       1 0.0000
                                                                                   C C.near
                                                                                               n
                                                                                                                        0.0000
77e 10
            L.UGF7
                                124 0.0026
                                             14 (.6666
                                                           U V.ULÜZ
                                                                                                 0.0000
           6.0024
                                                          0 0.0000
                                                                                               2 6.0008
                                                                                                                                    \theta = 0 .
 776 10 3
                     51 N.U2ud
                               145 0.0024
                                             19 0.0000
                                                                       0 0.0000
                                                                                   1310.0 0
                                                                                                            6 bilito
                                                                                                                        0.0000
 776 11 1
            6.0045
                                ./ U.NUUU
                                                                       0 0,000
                     78 0.0005
                                                                                                                        2 0.0000
                                              6 t.0006
                                                          0 0.0666
                                                                                   U 0.0252
                                                                                               1 6,0000
                                                                                                            o by Diett
                                                                                                                                    0 0
                                                                                                                        n 0.0000
 1/6 11 d
                                 42 0.11000
                                              6 6.0060
                                                                       U 0.0000
                                                                                   u u nome
                                                                                               0.0600
                                                                                                                                    Ûυ.
           L. 0445
                     51 0.00z5
                                                          0 0.0006
                                                                                                            U U.L.LL
                   122 0.0023
                                                                                                                        0.0000
 176 11 5
            1.0619
                                 0.000 كى
                                              0 6,6666
                                                           U 0.0000
                                                                       u 0.4160
                                                                                   6 0.0000
                                                                                               0 0.0006
                                                                                                            u valut
                                                                                                                                    0 c.
                      1 0.00+4
                                 15 0.9017
                                                                       0.0000
                                                                                   U U.ne66
                                                                                               U 0.0015
                                                                                                                        2 0.0000
 77 e
    1.1
            L.uulil
                                             35 0.0000
                                                          U ......
 16 61
            L . U U & 5
                                                                                                                                    0 .
                      6 0.0022
                                 52 u.nu47
                                             30 0.0000
                                                          1 0.0006
                                                                       u u.unuu
                                                                                   U U.Hebu
                                                                                               0.0000
                                                                                                            1 U.C.L.
                                                                                                                        1 0.0000
 110 41 4
                                 54 U. P644
                                                                       0 0.0000
                                                                                               0 0.0016
                                                                                                                        7 0.0000
           U. UU61
                      4 0.0001
                                             26 0.6179
                                                          2 0.0000
                                                                                   U ULCCOL
                                                                                                           12 0.1.11
                                                                                                                                    υ · .
                                  4 0.0000
                                                                       0 0.0000
                                                                                   L 0.000L
                                                                                                                          0.2000
  70 Lc 4
           1.0000
                      2 0.0000
                                              6 0.0108
                                                                                               0.0.0000
                                                          3 0.0001
                                                                                                            U battij
                                                                                                                                     6 . .
                                  1 0.0000
                                                                                                                        1 0.0000
 17. AZ
            6.0061
                      3 0.0000
                                              0 0.0000
                                                          0 0.0006
                                                                       6 0.0000
                                                                                   U U. N. C.
                                                                                               U 3,0000
                                                                                                            u u, riii
 17:
            6.0000
                                                           e 6.0660
                      0 0.0000
                                  0 0,000
                                              0 1.125€
                                                                       o n.unco
                                                                                   0 0.0000
                                                                                               U 0.060fi
                                                                                                            U U.BILL
                                                                                                                        r r.oroo
           0.0000
                                                                                                                                    ι υ.
 17- 13
        1
                      2 0.0000
                                  1 6.0000
                                              U 0.0000
                                                          0 0.0000
                                                                       U 0.UNL0
                                                                                   0 0.0601
                                                                                               U 0.9606
                                                                                                            0 0,000
                                                                                                                        0.0000
            L. UL(10
                                  0 0.0606
                                                                                                                        n c.enca
                                                                                                                                    C .
 1- 13
                      0.0000
                                              6 0.0003
                                                          1 0.0006
                                                                       0.0000
                                                                                   0 0.000
                                                                                               0 0.000B
                                                                                                            U b.Lill
  76 65 5
            0.0000
                      0.0000
                                  U L. N. UL
                                                                       a alunua
                                                                                   6 6 0606
                                                                                               u e ence
                                                                                                            0 0 ....
                                                                                                                          n_enge
                                              U L.UNUG
                                                                                                                                     7 .
                                                           1 0.0666
                                                                                   L u.rubi
                                                                                                                        0.0000
            0.0000
                      0 0.0045
                                 ZE U.PISE
                                             45 6.0000
                                                           0.0000
                                                                       0 0.0000
                                                                                               0 0.6906
                                                                                                            1 0.1111
                                                                                                                                     , U.
    11 1
            U.000C
                                 50 0.0097
  16 11 e
                      U 0.00m4
                                             62 1.0624
                                                          1 0.0000
                                                                       0.0000
                                                                                   0.0.0600
                                                                                               0.0000
                                                                                                                        0.0000
    11 3
            0.0000
                                                                                                                        0.0000
  1.
                      1 0.0026
                                 15 0.0110
                                             21 0.0000
                                                           U 0.0006
                                                                       0 6.666
                                                                                   0 0.0000
                                                                                               u 6,0000
                                                                                                            1 0.1:11
                                                                                                                                     υ.,
                                                                                                                        0 0.0000
            0.0161
                                                           2 0.0000
                                                                       0.0000
                                                                                   0 0.0600
                                                                                               0.0.0666
                                                                                                                                     υ..
  10 12 1
                     17 0.0000
                                  4 0.000
                                              0 1.4060
                                                                                                            U U.L.LL
                     57 0.0000
                                                                       0 0.0000
                                                                                                u 0.000e
                                                                                                                        1 0.6000
                                  1 0.0000
                                              b 6.6613
                                                                                   0 0,0000
                                                           U U. SELE
  lete e
            U. Ubit
                                                                                                                                       . .
  1. 12 3
                     35 0.0000
                                  0 0.0000
                                              U 0.0009
                                                           1 0.0006
                                                                       u 0.0000
                                                                                   0 u.ncou
                                                                                                0.0091
                                                                                                            6 0.6611
                                                                                                                          0.0000
            1.0173
            6.0000
                     0.0000
                                  2 0.0000
                                              0 0.0036
                                                           5 0.0006
                                                                       U 0.UNG0
                                                                                   0 0.0606
                                                                                               C U.Putu
                                                                                                            6 bafall
                                                                                                                        0.0000
            0.0000
                     0 0.0001
                                  1 0.000
                                              U 0.6063
                                                           2 0.0666
                                                                       U 0.4000
                                                                                   0 0.0606
                                                                                               0 0.0006
                                                                                                            u Olthit
                                                                                                                        n transcor
```

- Albendir Malde Miss. (1996). Salata Cara Caraga (n. 6) er er sella an annan Alandano Cara Cara Cara (1996). (H. a. Zaria Cara Cara Cara Ca

		•										•	÷	į			:				,	;	j	٠.	٠ د	·				- =	٠.	٠.	د		ر.	·									•		<u>.</u>	;	
	:			- 1.		· .)		• 3	ن د د		ے	J	~	٠,	0:	⇒ .	، ب	ټ	ب	د	9	. د	ه ت	٥.	د د	- ·	ی .	ر د	د ،	ى	ت	ت	i, C	. ر.	۰ د	.	= .3	<u>۔</u>		. =		-	ت	-	0	~;	9	v
	Ĵ.	:		100	0 5	2 2	2 2		: D	000	000	000	ung		200	000	000	٠ ا د د	0.0		C .	000	000	000				000	900	0.00	וייר	0.00	0.00	000	20.0	3 9 3 6			200	0.5	001	10.0	000	0/11	00,0	000	100	ספיכ	<u> </u>
		<u>_</u>		3 °			,	. 0	٠		٦.	5 5	د	، د د	_ :	ے : د د	: د د	ی د	: ت	ာ : င	ن د	c .	= 0	ء د د	- 0	ב בינ	ء د	<u>ئ</u> د	ء . د	. = =	0.0	ē.	ē.	Ē.	ē :		. E	5 6	 	3	Ξ		ē.	Ē.		3	Ξ.	5	5 3 2 3
	- :	_		τ. •		: :	. r.	۔ د	۲.	٤	د	٤	•			- 0		٠ -	٠,	٠ ،		-	- (- 1	۰ ۵		, r.	٠.	C	C.	c	÷	د	-	٠,	- •	- =		د	c	۲	د	٤	-	-	د	-	ε.	د. •
		-		٤.	: دُ				: :	,	1	ر د	١.	. د	. د	د د	. د	د ت	. د	_	د.	7	: د	د. ر	., .			د .		د	د د	د د	د	-	٠.	. د			ر ،	د	-	<u>ر</u> نـ	_	د		٠,		د د	
	• •			٠					-			1.5	Ĩ.	- :		-		-	٠ :	<u>.</u>			<u>.</u>	<u>.</u>	-	_	-	ĩ	_	Ĩ.	<u>.</u>		٦.	<u> </u>	<u> </u>				5	Ξ		<u>-</u>	Ĩ.	<u>.</u>	<u>.</u> •	-	.	-	<u>.</u>
	_	-		و د د	1 1	. 1	, E.	00	Ë	110	J.	3	o :	3 5	3 :	2 0	2 -	د د	2 9	<u>-</u>	= :	Ξ.	V S	- 0	2 5	200	ت	5	0	=	7.	5	=	= .	> =	= =	· c	ت :	ڌ	Ξ	=	ج	_	ప	<u>-</u>	5	= .	.	ي د
	31.7			- 1 - 2 - 1		=	3		÷	Ē.	ā.	U	<u> </u>	-							3	<u>.</u>	5 6		-	-	ä	Ξ	Ĭ.	Ę.	1	10.0	٠	<u>.</u>	2 6		0	0.00	10.0	9.	1 -0	100.	, nor	000.	, u	000.	30.0		
				2 2		· -	٥	ت	د	د	د	ر د د	د د) c) <u>-</u>) =) =) :) :	<u>ه</u> د) : 		- : - :	: c		٠.	٠.	. ~	~)	ر ن	Þ	ر د	<u> </u>	ੁ ਹ		၁ <i>(</i>	: c	<u>-</u> د		د ،	2		5	ි න	0	⊋ ⊝	ت د	າ ⇒ .	: د : د:	ာ •	o s
	-			و د	د .	3	2	ن	=	ے۔	ت	7.5	. د	י כ		ـ د	. د	ن د	. د	. د		э:						د	ن	2	ت	2	د	. د		: -:		د.		5	د	ت	د		د	.	:a	s .	
	7	-				2.	160	, i	٠.) fr	ت د •	000										ے د د د	2	. =	2	2	1)(ا مادون	uou.	٦,٠	ن د د	75.0	5	5		. בי	. r. 0	0.00	000	na n	000	0 110	2.5	010	006	C (0 6	0 0	
1				2 2	כ י		٥)	٥	٥	Þ	>	э:	2	2	د د	2	2	2	۔ ر		5	-))	د ه	, ,	∍	3	0	j	ح	٠ .	<u>ٽ</u> :	<u>ء</u> ح	5 =	,	د	່ວ	ž	5	ڌ	ن	٠,	Š	Š.	٠.		. د	5 =
1		_																																															
1			·			J. 0.3	()	ָ נ	٠.	ء د	ے د د) : :			0	2	ב כ	2	2					200	000	20.0	0.00	ċ	200	ے د	5	300	3 .	3 .	200	300	در	200	1300	100	200	200	ے د	3 :	ပ် (၁)				2
		:	-	2 =	J	۰	ے	ت	د	>	Ξ.	2 :	=	ت ن	د		: :2	, 0	- 4	, ·=	: 4	: -	, 13	· •	=)	c	0	÷.	5	= :	5 3	<u> </u>		ے ا	.5.	J	ž	7	ت	Š	، ت	٠	· .	Š	٠.		:	, ,
	1	_																																															
	4	7.7	1	, ,		<u>د</u> د د		٠ د د	د د	٠ د د	٠ د	3 5		3	2	010		1000	2	חנות	2		200	נננ	1010	2010	272	3	3	ے ا	3 3	3 3			200	2022	ניני	333	2.0	מנים מנים	3	הנים	ינ פרטיי	נ נ נ	י ה ה) 			
	٠		2	, ,	>	L)	,	2	•	٠.	: د	, ,	د	>	2	٠	د	ر	د		د	د	د	š	2	š	š	Š	٠.	: د	. د	٠.	; ;	٠	;	;	;	;	;	;	;	;	;	٠.	• :	• .	• ;	;
1		_																												_	-	-						-										-	•
1		2	3	3	<u>د</u> د د	3	د	٠ . د	3 6		5		1000	0000	70.00	2000	0.00	30:10	30.00	(00 0	0000	3	1000	9999	9090	4000	0000	3 .	٦٠. د د د	3 6			3	200	111	0.00	0.0	300	40.		2 :	0.1		3 -	2 2		100	2 2	3
1																																																	
	-	-																				_								•	•		•					٠, .	_ `	•									
		5	3 - 3	102	200	֓֞֞֜֜֞֜֞֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		2 0	2 2			ני נ	0.00	3	J. U.	100	400	200	000	300	2.5	1054	010	J. U.C.	ייי	300		3 3	֓֞֞֜֜֜֝֞֜֜֝֝֓֓֓֓֜֝֜֝֓֓֓֓֓֜֝֜֝֓֓֓֓֓֜֝֜֝֜֝֓֓֓֓֡֝֝֓֓֓֡֝֝֜֜֝֡֓֡֜֝֓֡֓֜֝֡֓֡֜֝֡֜֝֡֡֜֝֡	, ,	112	3 10	ניני	010	000	3.0)) (2	<u> </u>	7 =	0 :		3 3	2 0		200	000	ניני	300
1		7	,	•	د.	د	,	Э:	:. د	•	, ,	כי	2)	2	۵	د	s	د	2)	د	٥	7	2	,	. د	٠.	: د	د د	د د	,	,	5	؞ٙ	Š	š.	: د	• :	٠.	•	• :	•	; ;	,	5	٠,	٠,	;
		7																																															
			3	4.00	٠ ا	` .				, =	2	100	2007	, n n	200	000) 1	000	3	3	£ 0.3	1.1	2	٠ ا ا	5.5	, 1	170) - 0 :))))	5	ري . و و	() () () ()		ت د	- 3	3	; . 3 .	_	0 .2 3 .0 5 .0	•				10		ن د	5	0.0	100
		Ý																																															
		-	٥	. T	4) d	11 2	• =	ני	د •	כי	د	ŗ	÷.	ر <u>د</u> د .	ο.	٠.)	O)	0	2	₩,)	ت	. د)	> =	2		, 5	:	· >	٦.	-	. د	٠.	<u>-</u> د	7 4	3 1		; •		-	د ،	• • •	Ξ	7	۳) ۳)	9
		~	300	7.00	91.	7 3	3	ب د د			0.00	3.0	440	C 4.7	000	3	ن د: د	2	ر د د	302	ر د د د	ت د ۲۰	100	307	٠ - آ	3 :	3 2	3 .3 3 .3 5 .3	2 4	ند ر	100	000	200	370		٠ د د	ت د د	2	- 0		-		3	٠ ٠	2	5	÷.	,3t·	7.
ר ב ייני איני איני איני איני איני איני אי		-	7.	,	٠.					د	د.	د.	٠.	ر.	ر د	د د	ے د	ر د	ر. د	ر. د	J.	د. د	٠.	د	: د د	ء د . د	ء د د					٠.	٠ •	ر د		د د	ء د د د	• •	• 3				2	20.0		5	٠ د د	٦. و	5.0
	:	.3 .2	•1	¬	ų <i>,</i>	· ~		• •	-	v	₹)	-	v	٠,	٠.		ς.	-	·	0	4	v	~)		ψ.	<) -	٠,	:	, ,		•	4	ų	۳,	٠,		·) -	٠.,									٠	-	
		-	-						ر ان	ر د.	ر ر		7	Ξ. i.		٠.	₹1	r) 		-	Ξ.				א כי			. :		Ž	-	ij	4)	< .	·) -	: -	-			. ^.	• •	~)	• • ·	~	-	-	•

AND THE STEEL CLOSE CONTROL TENATORS OF SAME CALL PROTECTION OF THE STREET PROTECTION OF THE STREET OF THE STREET OF THE SAME CALL PROTECTION 1 ... 41. A 5 and four its property and appearance appearance of the property of the propert 474 4.040 24 0.0007 56 0.0008 t valbuc £ 0.0000 0 0.2000 e rienda . . 11 L_U166 0 0.0006 0 0.(111 47E 64 0.0000 24 0.0000 14 0.0144 210 0.0000 U . UU'12 4 0.0000 U 6.0000 **u u**.ncou u J.0000 U balett n niunuo Ų 47E u u.unun J 0.0000 1 0.6411 1 0.66678 4 6.0603 17 0.0000 1 0.000 u c.bsoo 476 21 0.0203 155 0.000 3 2 u.6037 E 1,1955 20 0.0006 7 6.0066 0 0.060 u 0.66(t U U.LILL n r.ucuo G 47e 3 3 22 0.01+2 146 6.0666 0 0.0000 6.0002 u (; unco 10 (.0002 .3 v....... 6 6 AFTER 0 0.0000 U C. LILL 476 4 1 1.0143 165 0,0025 10 0,000 2 0.64.04 31 0.0966 6 0.00L0 0 0.01.01 0 0.0000 2 0,1111 0 0,1111 0.0000 0.0076 .6 0.0921 5 0.0000 76 0.0003 22 0.0000 4 0.0702 120 0.0074 บ.กเบีย 476 4 4 66 0.0941 2 0.0002 14 0.0000 u u.unuo n njunua 0.0006 . 1.0664 411 4 3 6.0148 78 0.0003 30 0.606b 0.0000 0 0.0000 u u.neao u v.tici 0.0000 U <u>.</u> 1 475 J. P.C.J 0.0000 69 0.0005 11 0.0066 0.0000 U 0 0.0000 U U. PILLE 2 0.0000 Ĺ: 976 1 9.0543 176 0.0200 40 ***** 0.0000 1 0.0000 5 0.0000 U.0467 9.6006 D U. FILL ti 47e 6.6666 0.0000 U 0.0000 5 3 \$ C.U574 255 U.MZZZ 54 0.1000 2 0.1116 1 0.0000 0 0.0000 0.0060 0.0116 152 0.0200 110 0.0011 J -, . n 021 47E 6 1 9 6.6666 0.0000 6 6.8060 5 0.1 (L L ը թ.սնսս < L. LLUL 193 0.0046 15 0.0037 77e t: c (.617) 6 0.66600 £ 6.0006 0 6.0000 U ∪."(±0t 0 9.0000 2 V.LILL 0.00000 470 6 3 0.0019 55 0.0046 15 Linube 4 6.1495 1 0,0000 6 J. H. G.C. 6 0.000C 0.0000 9 0.0616 U ULITEE ü 47e 6.0095 6 u.nebe 1 156 0.0004 7 0.0000 0 6.0024 4 6.6666 0 0.0060 0.0466 0 0.0ctt 0.0000 6.0644 77. 133 0.0003 n 4.0400 2 0.0002 9 6.0666 0 0.0000 U 0.0000 0 0.0000 J 0.1.1.1 r r.unus 47e LE 0.0000 7 3 0.0059 o otali n c.enua 222 0.0029 1 6.6001 5 0.0000 0.0000 & w.orec u_u_606e 476 8 1 6.0077 71 0.0547 1:4 0.0009 0.0000 0.0000 0 0.4756 20 0.0111 15 c.0000 2 0.0006 1 0.0016 4 6.0000 4 0.0000 0 6.2641 97E 8 Z U.0059 86 0.0521 212 U.MU27 a.uneu 1 0.5626 12 0 /1111 1 0.0000 1 476 0.0055 1 0.0000 u.0006 96 0.0603 336 U.Au33 20 0.0111 n n.000n 21 b. c(b 6 5 0 0.0000 17c 9 1 U. UUC4 6 0.0000 B 0.000 2 0.6000 1 0.0000 0 0.0060 0 0.0000 a otanen 0.0000 U U.UILL 17. 9 4 0.0016 E 0.00mm 11 0. Pullu £ 0.0000 1 0.0000 0.0060 ս ս.րընս თ თ.თირი U D. Mill 0 0.0000 (1 176 17 0.0000 u v.^u00 0 0.0000 0.00000 u 0.0000 0.0000 $\iota = 0$ 9 3 U. UUUt. 6 0.0000 4 0.0006 0 0.016 20 0.0520 124 U.MUHS 8 0.0017 0.0000 17e 10 1 U.UU23 17 6.6661 U.unuu U 6.000 U 0.6600 0 6.666 176 10 38 0.0507 74 0.0012 0.0000 0.0000 n n.unuu 6.0097 4 6.6601 14 0.0050 **↓.**0€0∪ U G.PILL ú i, u valite 47e 16 5 4.0026 37 0.4344 47 0.0041 11 0.0662 13 0.0000 1 4.4060 1 4,0006 0 0.0069 0.0000 1/6 11 1 50 0.0002 0 0.0000 0.0000 0.0021 124 0.0133 $0 \quad a_\bullet \ 0.90 \ 6$ 5 6.6666 17 0.0000 **6 8.4060** U U.L.LL 175 11 Z 55 0.0334 142 U.MUU2 6 614060 C U.PROU 0 0.0000 n conce Ð L. UU11 2 0.0606 0 0.1.1. 6 6.0000 52 0.01.3 1/6 11 U. UU13 94 0.0003 16 0,0000 5 6.6606 0.0000 o o.neno U 0.6000 0 0.6111 0.0000 U ... 176 (1 32 0.0003 5 0.0606 0 0.0000 1 0.0000 C51 11 0.0026 16 0.0600 0.0000 0 6.0000 0 6.1111 170 C1 < 0.0027 12 0.0057 6 0.P6U5 4 6.0000 1 0.0606 0 0.0006 0 U.DLOG d d.ennn b b.b.ck n c.coo U 1 0.0000 11 0,0000 .7r (1 3 0.0557 26 0.0000 13 6.0666 8 4.0000 0.0100 C U.nene u 0.0006 U U.CILL 76 CZ 1 0.0660 0 0.00wa **0 0.0000** 0 U.Prou 0.0000 6 0.0066 U 0.0000 U U.PERC 1 balltt 2 0.0000 . 0.0000 175 62 2 0.0002 0 6.0000 u n.unco 0 0.000 0.5.6000 2 0.0000 2 0.0066 U U.CILL U ... U.0006 0.0000 .7+ L2 3 0 0.000 n n.0000 e . 1 1.0600 0 0.0000 0.0000 J 0.0006 0 0.0(et 1/6 C3 1 U. UULC 0.0000 0.0000 0 6.6666 0 0.0000 ս նենուն a p.anua 0 0.000, 1 9-1 060 U GARREL 176 C3 0.0000 0 0.06.00 0 0.000 0 1...049 1 0.0000 D 0.0000 0 0.0000 0 v.afean 0.0.000 0.0000 U . 0 0.0000 .76 C.5 しょうけけじ 0.00000 6 (.0660 C ٥ U 0.0000 6 0.4000 6 0.0606 0 0.0000 U U.LLLU 0.0000 0 . 76 11 1 6.0131 51 0.0000 0 0.000 1 6.6066 u u.unu6 ս ս.րընց 0.0000 4 0.0000 U U.0660 2 U D. FILL Ü .. 29 0.0000 ս ս. ռանն しょししろし 6 6.6666 1 0.0000 0.0000 0.0000 0 0.0006 0 0,000 0.0000 ι .. 1.0046 0.0060 .7t + 1 45 0.0000 0 0.000 0 6.6000 0 0.0000 U C.U000 U 0.0000 0 0.0000 0 billi ·/c 12 1 4.0000 4 0.0000 4 0.0400 0 0.0000 0.0000 0 0.0000 0 0.0000 0 0.1.11 n 0.0060 G 1 0.0000 L. UUU1 2 0.3000 b 0.0000 16 62 U C.UDED 6 0.0000 n blacenn U Datett 0 6.0000 b . 76 LZ U. UL UU 0 0.0000 1 6.0000 u e.anua 5 U U.U(ILU C U.CUCL U 0.6000 0.0000 U U. CILL 0 0.0100 0 6.000 0 0.0006 U 6.4760 innou **0.0600** u U U_CILL 0.000 1- 15 0.0000 0 0.000 6 0.0606 0 0.0600 0.0000 0 0.0006 6 0.0000 b 6.666 e.phuo 1 0.0006 u 0.0000 0.0000 7, 1.5 .5 0.0000 0.0000 6 6.6666 0 0.0006 0 0.0000 0.0.0000 6 6.till 0.0000 · c 1 1 1 0.0369 وع 0.0144 31 U. 0194 49 ***** 2 0.0000 0.0000 0 U.N.26 2 0 a 0 0 C to U U.C.LL 1 0.0000 0 0.0000 0. F1 & 1.0054 5d 0.03e7 1e6 0.0102 52 0.0665 18 0.0000 0 0.0000 6 0.0000 0 6.1111 ij, 40 P. 0101 35 U. 0170 0 0.0166 r (.0000 0.0039 14 0.0000 U 0.0100 0.0.0056

 \overline{A} , which is a constant of the constant < ြီး မြင်းမမည်သည်။ ရှိသို့ရေသာများအတွင် ရုံရှိသို့ရှိသို့ရှိသို့တို့တို့တို့တို့ မြို့ရေသည် ရှိရှိသို့ရှိရှိရှိသို့ရှိသို့ မြို့ရှိသည်။ Commerces sections and the sections of the section of the sectio 714.) TITAL CATEDORAL MARCHER DE PROPERTIES CONTRA DE C ကိုင်းသို့သည်။ မိုင်းသိုင်းသိုင်းမြို့မှ မိုင်းမို့မှ မိုင်းမို့မှ မိုင်းသို့သည်။ မိုင်းမို့သည်။ မိုင်းမိုသည်။ မိုင်းမို့သည်။ မိုင်းမို့သည်။ မိုင်းမိုးမို့သည်။ မိုင်းမို့သည်။ မိုင်းမိုသည်။ မိုင်းမို့သည်။ မိုင်းမို့သည်။ မိုင်းမိုသည်။ မိုင်းမိုးမို့သည်။ မိုင်းမို့သည်။ မိုင်းမို့သည်။ မိုင်းမိုသည်။ မိုင်းမိုသည်။ မိုင်းမိုသည်။ မိုင်းမိုသည်။ မိုင်းမိုသည်။ မိုင်းမိုးမိုသည်။ မိုင်းမိုသည်။ မိုင်းမိုသည်။ မိုင်းမိုသည်။ မိုင်းမိုသည်။ မိုင်းမိုသည်။ မ PROTECT NO CONTRACTOR OF THE TOTAL GRANT CONTRACTOR OF THE TOTAL G १९५ - जा ४१ जा ४१ जा वर्षा जा ४९ जा ४९ जा ४९ जा ४९ としょししゃべんへん みんん はらい じしもじょう とくさつ はっぱい はっち かり かくてて き け け ラグラン マウ け りゅう ファック はっぱっぱ ディック ちょうきょう デンスラグ うまえる ビジョウ サルル ロ ちょうて き しゅう アント

... 22 in

្ន

15

 $\sim \epsilon$ and ϵ and ϵ

	•
	Conceptante de la contraction
	$ au_{ij}$. The state of the
	× 5
	r . Publication to the properties of the prop
	e veneral entre entre de de verbier de verbier en la composition de veneral de veneral de veneral de veneral de
	CONTROL CONTRO
	င်႔ မင်္ကာလေလာင်စေရာက်ကောက်သောများခဲ့ခဲ့ခဲ့ခဲ့ခဲ့ခဲ့ခဲ့ခဲ့ခဲ့ခဲ့ခဲ့ခဲ့ခဲ့ခ
and a second second	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	_ {
	THE CONTRACTOR OF THE CONTRAC
	ေလလုပ္ရရွင္ရွင္ရွင္ရွင္ရွင္ရရွင္ရရွင္ရရရရရရရရ
	ordered and the control of the contr
	୍ର ବିଶ୍ୟ ବ୍ୟବ୍ୟ ବ୍ୟବ୍ୟ ପ୍ରାର୍ଷ୍ଟ ଅପ୍ରାଧ୍ୟ ପିଷ୍ଟି ବିଶ୍ରି ବିଶ୍ରି ବିଶ୍ରି କିଥିଲି ବିଶ୍ରି କିଥିଲି । କିଥିଲି ଓ କିଥିଲି କ ମିଥିଲି
	7
	1
	is a decrease and the contract of the contract of the contract of \hat{c}
	<pre>cccccccccccccccccccccccccccccccccccc</pre>
	ן נכר סור המינבד הרברה סנור + כז היו מממבור שנ שבר קוד ש ער + בו רמו מ − -

		, e - 1 - 4				4.1 4. 4.0		valuation	.t	120011	1 ·	1 Ab		6n5t+(+1	Lis F	STACERE	r:	, , , , , , , , , , , , , , , , , , ,		(141	1 -
	* 10 6 4	. 1 100 1	: 1	st Imit	₁ t	ne fort	r (a) 16e1	٠, ١,		1.4	e.t. 46++1	(we IGET	1.1	et 101 T	ربرا	z (1) 1	1.0	kr I (m) I	r.,
	17/ 13 E	(,000 (,000)		0.000		0.0000 0.0000		(.11(b		0.000L		0.000 0.016		0.0000 0.0000		0.0006 0.0000		U.Frsc U.Frsc		0.0000	U L
	477 1 1	U . U U .)):		0.0000		0.000		U.Liilib		U.U.UL		1.0000		v. ni.12		0.0000		belieu		0.0000	
	77 1 2	1.0011		0.0000		0.000		0.0100		u.u.u.		1- u000		U. OLGE		6.6000		Ualilk		0.000	ř
	177 1 3	76	2.1	0.0004.	è	∪.^ ∪U0	U	6.0666		0.000		u.unu0	U	0.0115	2	5.10ge	U	0.000	e	n.nova	1
	171 21	しょりひじち	z t	D. DEUR	ッ	0.0604	7	し。しししり	4		U	r.urtu	L	U.BECC	U	€.Aune	U	U.CILL	ť	0.0000	V.
	177 6 2	L. 466 3	2.6	0.0000	5	u. ^uUb	12	6.6001	5		U	0.6068	U	0.010a	U	0.000 OP	Ú	C.CIEL	•	6.00 oc	t.
	577 2 3	1.060		0.0666		บ.เข็บปร		0.6667	4		u	t.uºtu		u_C(B)		0.0000	Ü	6.0000		0.0060	I.
	177 3 1	166					27	0.0176	5 €		U	e.whia	U	U. Cruu		1.1024	e'	U.FILL	r	(((1) (1)	t.
	177 3	•.		^ LU098		U.^∪U/		d. (d) 53		.		0.0006		b c		ց.(:ՐՐՈ	Ü	w.t.c.		n.u0au	(
1	11/ 2	•		0.04+4				0.000		0.0606		J. 6900		0.010		0.0000		U.LILL		ր. սնատ	C
	577 -			0.01/7		0.0001		1202				0.0000		0.0852		0.41501		0.1000		0.9000	1;
	177 4 .			0.03.5		uut		6.1540		U.ULUL		6.0006		U. FEES		0.000		しっしてし		0.0000	Ü
	177 4 3			0.0241		0.000		11.6476		0.000		6.0166		U. Multe		9. (0.00)		U.lit		0.0000	£.
	177 5 1	6.0055				0.0104		0.6646		0.0000		6.0000		$v \cdot \theta \in \theta \circ$		0.0000		U.C.L		0.0000	L.
:	77	1.0e30		0.6924				0.0370		0.0000		4.0000		0.000		0.0000		Calita		6.0000	
	177 5 4	0.0021		0.2105				0.016∠		0.0000		6.0000		0.0000		0.16:16		Colita		0.0000	i.
	4/7 e 1					u.rulu		i. (160		0.0000		U.U#LU		U. PU(-U		U.1010		0.000		0.0000	
	177 E 4	L . U Z Fig		0.07.0		0.0055		1.3116		0.0000		6.0000		0.0000		0.0000		Late CL		0.0000	ن
	177 7 1	(, 00 g. 5)				u,ru21		6.6631 6.6670		0.0606 0.0666		0.0000		0.0100 0.0103		0.000£		lişl-Elli Zalili		6,0000	i.
	177 7	(.00E5				0.001 2000		0.6340		0.0000		0.0000		0.0183 0.0(6)		0.0002		b. 1 . 1 t		0.0000	(
-	777 7 2	(.0757				7,002		0.0340		0.0000		0.0000		6.0500		6.500t		0.111		0.0000	
1	177 6 1	1.1305				U. PUBU		1.1199		0.0000		u unuu		0.0101		3.0064		0.1, 1		0.0000	ſ
1	177 71 6	0.1162				0.0011		110		0.0006		0.0000		ს იცის		0.6005		0.1111		0.0000	U
1	177 8 3	1.6675				U.NUUZ		1.6640		uul		0.0000		U.0600		0.6691		0.1111		1.0000	i
•	177 9 1	L. ULUI.				0.0000		0.6066		0.0000		0.0000		0.0000		0.0011		0.000		0.0000	Ĺ
i	177 9 4	b.6661				0.000		4.0660		0.0000		0.0000		0.010.0		a. 9696.		· C. CICC		0.0000	Č
	177 9 3	1.0000	υ	0.0049		0.000	1			0.00 00	J	6.0000	U	0.000	U	e unter	υ	L. L.C.	r	ก.บกบบ	ί.
- 7	177 10 1	1.0317	$\mu \nu$	0.0321	45	0.0003		L. L. 11 11 16		0.0000	j	เ.ือกเก	U	u.nees	1	6.6000	U	t.lite	n	0.0000	ŧ,
	*77 16 e	1.,0151	45	0.0541	161	U.∩U14	14	6.0000	2		U	0.5000	U	Ծ.ՈւԾ	Ü	0.6006	U	L. Bitt	P	0.0000	(,
	177 10 3	0.6106				0.0016		0.6060				() . unup		_ Մ.Պէ(ՈՄ		ելՈՒԵՆ				0.0000	Ł
	17 11 1	1.6366				0.000		1.6410				(, uf) ()		0.0153		0.0003				ո.ստեն	U
	477 11 ≥	6.0225		().0160		0.000		0.0063		0.0666		0.0000		- U.030c		Ç.buna		1.6.61		0.0000	(
	1// 11 5	(, 60 - (r*unite		0.0951		0.0000		u,unte		U.DIC.		J.Hutu		U. LILL		0,000	L
	477 C1 1	(.0216				0.0045		0.06:14		0.0606		C.0000		0.0000		0.0004				0.0000	0
	1/7 (1 .	. Delege				0.0015		1.0179		0.0000		g.unna		0.000		ត.្តបាលប		· U.L.LL		0,0000	U
	1/1 C1 3	0.0342				u.nu5r		L.LEMU				1.0000		0.0000		i, hutti		. v. bell		0.0000	U 0
	111 (2 1	1.6064		0.0000		0.000 0.0003		0.0000 0.0000				1, 0760 6.0766		t to Prote		0.0000		بالاران			t.
	177 (2 .			0.0000		0.000		6.000				-		0.0000		0.0€0i 0.000(I U.P.LL		0.0000	li Li
	177 (3.1			(.0000		0.000		L. 6000				(,,,)) (,,))		. 0. 000 : 0.∿€0:		0.000C		i Haliza Juginet		0.0000	u U
	1// (2.1	(,000) (,000)		C. 0000		0.0000		1		0.000		0.0000				0.0000		i Gettet		6.0000	u e
	11 (3 2	L. DUI-U		0.0000		0.000		0.0100		0.0000		1.0000		i bantua i ballete		0.000		, u.tett Juliti		0.000	Ĺ
	177 [1 1	0.0054		0.0000		u. PuU3		0.0100		0.0000		0.000		. . .^(0.		3.0100		b.lite		0.0000	i,
	177 (1 2	U. UU45		0.4040		u.nu11						0.0000		4.000		0.0000				0.0000	
	177 [1 3	0.0045		0.0000		0.0057		U. 6600		0.000		6.0000		. 0. ⊓0:0€		0.7000		J U . Li.LL		6.0000	
	177 66 1	U. UUD6		0.0000		0.000		0.1100		0.0161		(: unuu		U. HI Cir		0. 00Cc		u.reci		0.0000	
	11112 .	(.000)		6.0000	-	u.n.uu		1.0166				n unun		0.000		L. Wille				u.n(0)3	
	177 12 3	0.0500		0.0000		u.ru05		L. L1160		0.6666		نا يا (ايا يا		a bic.		0.1 160		u.lili	ſ	n.orae	
	= -																				

	77	"	,		, ,	, ,	77	77	. 77	1.1	77	, , ,	: :	. 77	. 77	17	7 7 7	77	۲7,	577	-17	71	- 77	117	577	777	- 77		27	577	577	577	*77	317	177	.77	11,	177	577	*77		117	-							
																		_	_			_																					Þ	_						
																																												÷	7					
•		٠.			٠.		٠.	c	,	•				_	٠,		٠,	_	c.	٠,	٠,	٠ ح	_	•	٠,	٠,		٠.	_	_	c (- د	_	ے ،		٠,	_	~ 1	c 1		٠,	_	-		ŕ					
	<u>_</u>					6	Č	Ě	2	5	5	2	5	Ę	5		-	٤.	٤.	٠				÷	9	c .	<u> </u>	· <u>-</u>	· <u>-</u>	٠ د	- 3		5			· <u>·</u> -	•	· ·	· ·		ר•רוני	٠	-		ć					
,			. 6	. 4		·,	: :	ů,	Ċ	7	Ş.	Š	Ģ	2	<u>:</u> ج	2 8	ÿ	Š	č	Ċ.			è	ć	ċ	0	5 6	ě	Ē	9	ວິດ		č	000	500	5	000	Č,	N 2		0.0	<u>-</u>	Ξ		-					
:	, t	: 1	10	10.7			٠.	Ġ	5	ŧ.	٠ ء	٠.		_	No d		. <u></u>	c	c	۲,	۰,	c 4	_	_	.	c (c c	. e	_	¢	c (c :	- -	: c	c	e i	۰ - ۱	, _		c			_					
	2 0				•			0	_	0	- 0	= =	, =	a	~ ·	٠.		. –	_	0		, ~	. –	$\overline{}$	<u> </u>	~ -				_	~ ~		_	_			_					_	ž							
		Ξĕ	ŭ	ž			ò	ĭ	5	Ξ.					7 3			Ξ	ξ.	-	= ;		٠.	,	_	P 9	9	? =	5	5	٠,	ç	£	٠.	r (r	·	α	٠.	٠ ،	٠.	000	=	1611		רזיענ	ç				
			۲۰		: 1.		٠.					-	•		_																		_	_	_		_				c 6		-		£ .					
			•	c	۰	_	c	_	_				e	-			-	_				-	-	-					-				_			_	_					_	c .							
٠.				٠.	٠.	٠.		٠.	`-	_				- '		- - -	•	•	• •	- •	•	٠.	•	• '	• •	•	•	•	•	• •	•	•	•	• •	•	•				•										
6	: 6	: 5	3	5	ĉ	Č	5	Ü	Ñ.	5	£ (ď	7	2	- 1	. 6	ē	ċ	00		3	Š	57	4				è	ò	ċ	, ,	ċ	ç	2		000	00	4 6	- 6	=	000	5	G 13.7		¥ .	-				
,	- ს		(-		· U	14	۲	v	7	ن ر		٠ 7	5	N .	• u	, -	c	r	۲,	٠,	. .	۴.	(Je	7	1.			· c	c	- (, L		۲.	.		_	. i	و م د سا		•	c (-	-		2	-				
	•		ŗ	•		c		•	•				•			٠.	•		٠.		:	÷	*			•		•	c	c :	: :		c		-	-	٠.			ç	٠.		:_							
5	. 7	5	13	519	5	133		£.	ا بر در		- 0	Ē	5	000		: 5	=	5	5		5	5	•	5		5	5.5	36	Ξ	0 0		6	5	2 5	<u> </u>	5	_		2	Ē	,,,,,,,,		5		Ξ					
c	v	Ŭ	ŭ	ç	-	œ	č	ŗ	7	ă.	řč	7	č	7	٠ č	-	7	ċ	ë			ò	ä	<u>.</u>	òò	ċ	c	9	č	Cz f	٠ c	73	ć ;	Ċ	ç	Ç.	6	7 6	÷	Ξ	e e		<u>T</u>	-						
•	-	Œ	C	-	-	c	c	œ.	Œ.			•																													c c		C	:	-					
:	:	:	:	:	:	٠,	٠.				:	:	-	: :			:	:		:	:	:	:			•	:		٠.	•	•	٠.	•		:		•		•	•	• •		፟		_					
è	ò	ò	2	è	100	è	Č	ر و	֝֞֜֝֜֝֜֝֓֓֓֓֓֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֝֓֡֓֓֓֓֓֓֡֝	֓֞֜֝֜֜֜֝֓֜֜֝֓֓֓֓֓֜֜֜֜֓֓֓֓֓֓֓֓֓֓֜֜֜֓֓֓֓֓֓֡֓֜֝	è	č	č	÷ ?	2	ċ	2	,,,	֡֜֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	ć		0	נְינִ	6.6			6	Ę	Ę.,		, 5	֖֖֖֖֖ׅׅׅ֡֜֜֜֜֝֜֜֜֝֜֜֜֜֝֜֜֜֜֜֜֟	56		Sec.	5	ָרָ עָּרָ רַנְּ	בינ בינ	. 5	ç			Ġ		-					
•			٠		_	_		-	C- (. .		C	•	-		٠.	-	.	- •	•		_	-	_ (· c	•	۲	ς,	רכ	. с	c			٠.	-	- 0		٠, ر	c	ຣິເ		_	-	7					
																																									٠ ،		ċ	7	^					
			:			<u>. </u>	<u>.</u> .	= 1					= :	= :			٠.	2			:		= :			:		۶.	C 1	= =	::	Ξ.	<u>ت</u>	•	-	•	-	- 0	• -	€.		•	=		1.					
0	2	5	9	2	ž	Š	Ē,	2	0 0	2	5	Š	è.	5 6	5	چ	<u>ک</u>	2	5	2	5	Š	5	2	2	ج د	è	-	2	2	Š	Š	ò		Ę	000	5 3	000	ຸ້	5	0,000		16	,						
_	-	0	_	0	9	Ŧ	0	c (0 () C	-	Ç '	-	. 0	-	_	c (9 0	• •	, 5	0	C 1	c c		. 0		C .	0 :	= =	æ	6	c (C	0 0		- C	. 0	_	0.0	,		3	1 5 C C 2					
																																									c c		-	Ċ						
•		٠.	٠,	•	٠,	٠,	<u>.</u>	Ξ.	•			Ξ.	::	-	•		. :	<u>.</u>		:	٠					٠	÷	•	9	•	:	<u>.</u> :		٠	•		•		•				*	Š	,					
9	ŧ	ũ	ě	31.	Ę	ć	5		5	36	. <u></u>	÷.	ë:	<u> </u>	Š	ě	ź:	Š,	5	Ē	5	000	Š	Ĭ 2	Š	5	03	5	5		5	7 c		0.0	0	÷ 6	-	00	0.0	ت د د			7	7						
7	4.5	.7	•	•	Ξ.		φ.	c. :	. 4	FE	Ξ	•	_ (c, c	۲.	ς.	ς:	c. c		_	٠	53	- :		=	τ	•	٠.	- 0		c	٠,		_		~ ⊢	- P:	· ¢	`c.	c 1			_	=	•					
																																									- c		Ē	t						
٥.	÷.		•		٠.	٠.	· ·	•	•		•			= c	•	٠.				٠	٠.	٠.				•	<u>.</u>			•		• •	= =	٠	۲.	c :	•			<u>۔</u> :		į	2	£.						
900	0.00		0.15	000	5	0	5 5	2 6	2		5	100		300	ě	0.00		5 6	000	000	5	300	0 0		25	3.90	500	000		200	000	200		Ē	101		2	=	600	000			ر د	Ţ						
ن	-	C	Ξ	_	C,	C '	c (- 3	5 C	, ,	-	5	C (Ċ	Ē)		. د	ç	Ç	2	c 0			=	<u>د</u>	٠.	= =	= =	Ċ	Ċ :		7	٠	c c	5	c	Ē,	ē :	= =		<u> </u>	2						
c	c	c.	¢	c	c	c ·	c (- 0	- 0	٠ -	c	٠ ،	c- (: c	c	c .	c (. c	c	c	-	c 0	- c	c	c	0	c	= 0	· c	c	د ه		. 0	c	c c	6		c ·	c (: c	į	-	=						
ċ		C	•	٠.	٠.	-	ું •						• •	•	-	-		<u>-</u>	٠.	٠.	-	٠.	0:	٠.	c	<u>-</u>	٢.	c (c	•	0	ج ج	٠	= :			င		c :		3	2							
	Ξ.		=		<u>.</u>	$\tilde{\Xi}$				=	٤	2;	7 7	===	3	5			=	7.19	ر <u>ا</u>	9		3	Ξ	Ę	Ξ:	[]		Ξ	-	Ξ;	-	Ē	Ξ.	_ =	=	13	-	2 3			=	-						
-	-	-		_ ;	٠ ١	٠,				-	٢	٠,			_	- 1		- (_	^	۲	P	ء ج	٠,	•	^	÷			•	۲۰	ć (- '-	_	^ ;	·	_	-	r	- 7		•	_	-						
ت	=	2	=	,	,	= .	- -	= =		: =	כ	5 :	= 7		ר		ν:	. .	, =	=	٠,	٠.	= =	: >		2	٠ : د		٠,	, , ()	•	= 1	່ວ່າ	7	Ţ.	N :)	. 3	: =	_	7 :	,		-		-					
																																									2 2	,	٠ ٦	2						
ຸນດ	3	ŝ,	3	5	3	9 6	0 0	3 3	5	Ś	5	5		5 6	5	3	5 6	3 2	200	0.0	00	0	5 5	5	00	3	00	5 5) :	9		5	300	0.0	000		,00	2	2		. 6000		7	>						
0.0	5	Ē :	6	5	<u> </u>		5 6	5 6	9	5 6	00	0 0	3 3	5 6	3	00	5 6	2 6	00	00	0	60	5 6	2 5	00	Ü	S	5 6	3 2	0	3	c 6	5 6	0.0	60	000	5	0	Ĉ	0 0	0		Ξ.	5						
9	٠	=		_ ,	۰.					. 0	0	0 0) F	٠.	0	6	5		. 0	c	-	c 4			0		٠,					<u> </u>		c	٠,			_	۰.	.			_	40						
	c i	c :	= (<i>-</i>	_ (٠.	-	_	= 0	: =	· -	5	c (С.	۲.	_	0		. c	c	_	c (٠.	c .			c	c 6	_	٠,	e.	~ .			,								

ts.	((" () · [(در. دراند		. i		01.61. 10 0	.1	1 66+15	¥ *-	1 : {. L		665TI (11	1.46	FULTCHAL	į i	11 - 1		(t Alinge	07	
1 4	at ion t																				•
577 7 3	0.0145		0.0605	ر د	U. CUUU	L	L.6199	16	0.0166	L	U.0960	υ	U. P58E	4	0.1660	ı	0.1.11	ŀ	0.0000	0 .	
577 b 1	6.6496		0.0533		0.000		0.6106		4.6606		0.606		0.0064		9.0057		U.Iill		0.0000	UU	
777 E Z	1.0763				0.0012		6.6154		.		0.0060		Ს .ᲘᲜᲘᲜ		0.004₹		0.C.LL		0.0000	U C	
-11 E 3	L.UEUE				0.0025		U.1366				0.0000		0.0000		J.JU-16		U.CILL		0.0000	0 0	200
577 9 1	0.0000		0.0001				L.1.149				1.010		0.0000		5.6665		b.till		0.0000	UU	
577 5 2 577 5 3	0.0000		0.01.3		0.000		u.uccu				0.0000		0.000		0.0000		U.CILL		0.0000	G ti	
~77 5 3 ~77 10 1	6.0006 6.0616		0.05 <u>-1</u>		u.000u		0.6633		0.0000 0.0000		0.0000 0.0000		0.0000 0.0325		0.0000		0.0100		0.0000	0 0	
577 10 2	1.0046		0.0321				U_(((159		0.0000		0.0000		0.0325	-	0.000		6.6166		0.0000	0 0	
577 16 5	L.0036		0.1604				L. Lluz		0.0000		0.0000		U_∩£3:		0.6000		6.1111		6,0000	i u	
577 11 1	1.0073		9.04.0		0.0000		6.000		0.0100		6.0000		0.0600		0.0000		6.6111		0.0000	i i	
577 11 Z	L.0136		0.05.3		U. PL 03		0.0057		0.0000		6.0000		U_0541		0.0000		0.1666		0.0000	nυ	
577 11 3	1.6097		0.05/4		0.0000		6.0002				0.0000		U_0506		0.000		U. CLL		0.0000	6 U	
577 CI 1	L. UULC		0.0606		u. 6.00		0.0005		0.0000		0.0000		U PERU		0.0000		6.6100		0.0000	Ûυ	
577 C1 2	ս. սննն	Ü	0.0001		0.7005	2	0.0800	Ų	0.0000	U	0.0050	, U	0.0000		0.0006	J	0.(100	. ř	0.0000	C i ü	. 📑
577 C1 3	0.0000	U	0.0000	11	0.7001	1	0 • Ասսն	U	U. UU O U	υ	0.000	Ú	0.000	U	0.0001.	Ų	t.lill	n	0.0000	U U	
577 CZ 1	0. 0006		0.0000	U	0.000	Ü	0.0600	5	.	v	0.0900	Ú	ა "რცრს	ن	0.0000	U	6.6666	r	0.0000	υ	. 4
577 CZ &	0.0006		0.0000		0.0000		6.0603		0.0181		0.0960		0.0006	Ü	0.0006		0.600		0.0000	1 0	
517 Cz 3	0.006 6		0.4440		J. (1604		U.0606		· • · · · · · · · · · ·		0.0000		U.0000		0.0600		6.1.1.1		0.0000	6 6	
577 C3 1	r.0000		0.0000		0.000				u. u.u.u		0.0000		0.000		0.0000		U.C.L.		0.0000	Űυ	
571 L3 Z	0.000		0.0000		0.000		0.0000		0.0000		0.0000		0.000		0.0000		U.L.L.		0.0000	U III	
511 L3 3	L.0000		0.0000		u.0000		0.0000		u.u.u.u		0.0000		0.000		0.0000		6.6.66		0.0000	0 17	
577 L1 1 577 L1 2	6.0066 0.0027		0.0004		u.0u0u u.0u33		0.0000 0.0000		0.000t		0.4000		0.000		0.0000		U.L.LL		0.0000	0 0	
577 (1 3	6.0054		0.0004		0.0033		L.000		0.000		0.0000		0.000 0.000		0.0000		0.1415		0.0000	0 6	-
577 L2 1	0.0000		0.0000		J. 040		0.0000		LUU		6.0000		0.0000		0.0000		6.[[]E		0.0000	0 0	-
577 1.2 2	0.0000		0.0000		0.000		6.0000		0.0606		0.0000		0.0000		0.0000		0.000		0.0000	0 0	
577 UZ 3	1.0060		0.00.0		0.0000		0.0000				0.0000		0.0000		0.0000		0.0111		0.0000	0 U	-
5/7 [3]	1.0137		0.0004		0.0002		0.0000		U.UÜÜL		0.0100		U.0000		0.0006		6.(1.4		0.0000	0 0	
577 1.3 ≥	1.0000	U	0.0000	1	0.000		0.0006		v		0.0000		0.0000		0.6000		bellie	r	0.0000	0 0	i . 🗽
5/1 (3 3	0.6666	U	0.0000	0	し。作ししり	C	0.0000	Ú	0.0006	Ü	0.0000	Ĺ	u.060u	u	0.0000	U	6.1011	U	0.0000	0 U) . 🌉
577 F1 1	i. . i (((((Ú	0.0000	٠.0	しょりともち	41	U.0550	11	u. uu60	Ü	0.4060	Ú	U.0026	1	0. 6000	U	0.1161	1	0.0000	0 0	
5/7 t1 €	6.0062		0.000		U.0407	46	6.6074	5	0.0666		0.0000	Ú	0. 0000	Ų	. .	Ú	U.CELL		0.0000	ט 0	
577 E1 3	0.6066		0.0000		0.0417		6.0690				0.0000		0.0625		0.000		6.1166		0.0000	U u	
577 t2 1	r.rauc		0.3002		u.nuuu		0.0066		0.0000		0.000		0.0165		. 0.0000		0.000		0.0000	U U	
*77 tz z	0.000C		0.1104		0.0000		1.0000		L.U006		0.0000		U.0037		. 6.0000		0.111		0.0000	0 u	
- 17 (∠ 3	6.0000		0.0617		0.000		1.6000				0.0000		0.0(5)		0.0000		u.f.ll		0.0000	0 0	
177 L3 2	し. ∪∪00 し. ∪∪00		0.0057		U. 0.00		0.0600				0.0000		0.000		. 0.0000		0.000		0.0000	(ე ()	
-11 L3 Z	6.0000		0.0037		 000		0.000 0.000		0.0000 0.0000		0.0000 0.0000		- 0.060u		0.000n 0.600a		. 0,011. : 6,111.		0.0000	0 0	
777 1 1	0.0000		0.40.3		0.0005		0.6321		U.UUGL		0.0000		0.000c		. 0.000 1.000		0.01.66		0.0000		. .
77 1 4	0.0240		0.0002		0.003		0.0521		0.0000		0.0000		0. 0000		, 0.0001 , 0.0001		. 0. 01.00		0,0000	0 0	
77 1 5	0.0102		0.0000		U.0U97		0.0000		U.ULOL		0.0000		0.0000		U.0001		0.1111		0.0000	0 4	
177 2 1	U.U000		0.0005		0.0222		(,0255				1.0061		U.1600		0.0000		0.000		0.0000		
777 22	0.0037		0.0005		0.0045		6.6169		0,0000		6,000		0.000		0.0001		6.0111		0.0000		
77 2 3	U.U250		0.0003		U.0237		0.0090		0.0000		U.U060		U.000u		U .000		0.((0.0000		
177 3 1	0.0140		0.0320		U.0546		0.1483		0.0666		0.0000	0	0.0563		0.000				0.0000	ů u	u. 🖡
171 3 2	0.0001		0.01/1		0.0070	31	6.0422	14	·		0.0000	Ú	0.0000	Ų	0.0000				0.000		J. 🕻
77/ 3 3			0.0255		U. TURE		1.6427				0.0000		0.0000		0.0000		o determina		0.0000		∰
177 4 1	6.0004	5	0.0002	1	u. nuuu	U	0.6242	14		ι	0.0000	,	, c. uno:	(J U_0000			. r	0.0000	0 ,	₩. 🛊
							1														Ŧ

THE CLARACTER milston struct Li Those ever the A trustsis $t = \{ x, y \in \mathcal{X} \mid x \in \mathcal{X} \mid x \in \mathcal{Y} \}$ TARLS BASTILLIA FULTLIALIT 1 ; or trolled on frills on trolles and frilles on trolles an indian on frills. Or frolles on frolles or freeling 4 & 5 r 0.00c0 0.03/5 52 0,0100 10 0.000 6 6.6142 11 0.0066 ` L.unuo 0 0.0006 6 J.00f6 U G.FILL G 15 0.0000 0 0.0413 L.0136 30 0.00.9 5 0.0000 0.0000 0 0.0000 **0 0.**0000 0.0000 0 0.1(4)U u 777 5 1 1.0054 11 0.0096 0 0.0106 r e,0000 Ú. 0.0000 0 0.0011 4 0.1166 117 ∄ U.uLUL 0.0000 5 2 0.0030 4 0.0000 12 U.1187 264 U.L185 מסמים, ט' ט 0 0.6021 2 6.1111 r r.crco 0 5 5 1.0110 5 0.0606 777 3 0.0000 14 0.0501 161 ***** 0.0000 0 0.0000 0.0065 6.1111 0.0000 Ū. 6 1 6,0023 14 0,0095 10 0.0088 27 6.6092 2 4.0666 0 0,0000 **€ ₺.**ᲝᲜᲜᲡ U 0.0001 1 4.((16 0.0000 4 1.0024 0 777 6 Z (.0021 5 0.0096 55 0.6060 J 6.0000 **u u.**nocu 6 0.0001 0.0000 1 O. bill 97 0.0096 777 h 5 0.0257 9 0.0057 17 0.6156 4 0.0660 0 0.0000 U 0.000 0.0000 0 0.0002 2 0.0666 1 6.0052 es 0.00_u 8 b.Nu14 117 4 0.6656 1 0.0000 0.2620 ಚ 0.0000 0 G.CLLL n clubbu Ω 177 7 2 0,0011 42 0.0008 3 U. nu04 5 (,6025 5 0.0606 **0 0.0060** 0 0.0615 0.0000 O U.BILL 0.0000 Û 7 0.0193 171 ۵ ۷. 94 0.0002 9 0,0000 7 3 6.0062 o v.0u17 3 6,4000 0 6.0683 1 0.1500 6 G. HILL 0 0 0000 0.0000 10 0.0000 0.0000 0.0000 8 1 0.1033 305 0.06m2 6 6.6600 0 u. 0 0.0203 1 U D.CICL C.0874 256 0.0404 U U CLCU ٥ . 16 6.0000 L L. 6063 B 0.0006 1 6,0000 0.0053 2 6.1111 777 8 5 0.0524 225 0.0448 114 0.00Uz £ 0,0067 4 6.6000 6 juinnec 0 9.0026 n n,unga 2 0.1666 777 9 1 L. WUUU 0.0000 U U. MUDU 0 4,2650 12 6.0006 0 0.0000 0 0.0600 0 0.0000 0 billes £ 0.0000 0 ι. 711 9 3 0.0000 0.0000 U 0.0000 6 3,0136 14 0.0666 **u** 6.6066 6 0.0600 0 0.0006 U water at 0.0000 0 0. 1 0.960C 0 0.0617 9 0,0000 0 0 0000 U U.0003 3 0.6961 20 0.0666 0.0000 777 6 0.026n U 0.6127 777 10 1 0.0355 169 0.0175 20 U.D.09 0 0.0000 26 0.6222 e 0.0000 0.0000 0 0.0000 2 0,616 1.0264 140 0.01+1 0 0.0001 22 U.NU48 23 6.1667 1 0 0.0100 0 0.0000 1 b.PCCC ט ס, טמטס Ü b 717 10 2 e valuti 4 0.0606 r r,0000 777 18 3 L. 0066 54 0.0149 6 0.0247 6 6.4900 0 0.0000 U 6.0064 0 į. 25 0.05.1 777 11 1 0.0353 20 0.0010 27 U. 0000 U 0.ULU4 5 0.0P00 U 0.1485 1 0.5609 0.0000 ο... 2 0.1911 777 11 4 0.0462 160 0.02/3 32 U.MU46 22 0.6264 5 6.0601 1 0.0000 0.0421 3 0.6600 0 6.0116 0 0,0000 υ. 41 v. P150 0 0.0617 177 11 3 U.U5C+ 108 0.0125 45 0.6571 3 6.0667 e.uneu 1 0.0000 0.0000 Û 1 0.000 n c.0000 ο ι. 777 A1 1 0.6061 1 0.0000 15 0.0500 106 6.6276 4 0.0001 0.0000 0 0.ne0e 6 0.0004 0.0072 16 0.0197 49 0.0360 67 1.1112 u dinner 0 0.0660 1 0.0060 777 61 2 0.0000 2 0.0666 U 0.0000 O D. HELL 0 u. 777 A1 3 L.0003 3 0.0071 cc 4.0159 0.0000 0 0.0002 0,0000 υσ. 2 0.0000 u ulbeno 1 baleut 0 0.0001 1 0.0002 r 0.0000 777 12 1 6.0060 k 1.0000 U 0.0966 0 0.0000 U 6.0000 U balitt U.LUU0 0.0002 5 U.NUU2 0.0100 0 0.000 0 0.0000 0 0.0111 n n.uuuu 1 6.0664 3 0.0000 0 0.0000 777 42 4 しょけんし 0.00-1 2 6,0000 U 6.0690 2 6.0000 0.0000 0.0600 0 0.0(1) 1 0.0000 Ω 0.0000 777 63 1 L.CU(0 0.0000 ט ט פוזייט ט U U.6006 2 6.0000 u u.naoc 1 0.0000 υ ι. 6 0.0066 for traction at 777 A5 K 1 6,0000 L.6660 0.0000 L 0.0000 6 6.6607 2 0.0000 0 0,0000 0.0600 0.0000 0 6.(11.) Ú. 1 0.0000 177 1.5 3 U. 6000 0.0000 0 0.000 1 6.0606 0 0.0000 6 0.00GE U U.0006 D U.B.LL ΰL. U L.C1UL 777 ta 1 53 6.1223 6.0000 0.0162 J1 0.0142 7 0.0006 u c.u064 G G.neta 0 6.0004 1 6.1111 0.0000 0 . U 0.0102 J 0.0000 0.0000 D U. nrue 45 0.0525 U 0.0000 0 O. C. LL 0.0000 00. 777 1.1 2 L. 6000 146 1.0000 0 0.0001 0.0000 4. 777 11 3 10 U.P.74 69 6.0366 1 0.0000 0 0,000 0 0.000 U 0.0003 1 U. Fill 0.0000 0.0001 5 0.0004 U U.UNLU u.neoc 0 0.0000 6.0000 777 F2 4 0.1648 0.6666 U 777 Ez Z 1.6066 0.00.2 5 0,0003 3 0.1:478 5 0.0000 **0.000** 0.0000 U U.UC01 1 0,611 0.0000 0 υ. 2 0.0003 0 0.0000 1 0.0000 0 0.40.2 \$ 0.0000 177 12 5 6.4606 4 0.6056 0 0.0000 0 0.0000 U U. G. C. 0 0. 0 0.0000 0 0.0000 0 0.6004 0 0. nuou 0 0,000 /77 (4 1 L. 0000 5 0.0006 0 0.0000 U 0.000C 6 U.CLLL V U. 117 1:3 e 6.0000 0.0000 0 0,0000 0 0.0000 0 0.6006 0 0.000 0.0000 0 6.6690 0 0.000 r 0.0000 177 13 3 0.0000 0 0,0000 6 0.0CC4 3 4.0006 0.0000 0 6,6111 o o. 0 0,000 0 0.0000 0 0,0000 1 0.0000 0 J. 7/7 61 1 6.0011 2 0.0003 7 0.1160 204 U. 0760 18 0.0606 U U.UCU0 0 0,000 0.0013 1 0,012 0,0000 0.0000 151 v.0275 0 0.0000 0.0000 77 (1 2 1.6019 77 (1 3 0.6006 4 0.00.2 5 0,0571 7 0.0000 000000 0 0.11.L 0 0. 0.0000 11 U. 1965 10 0.0000 0 0.0000 0.0063 172 6.6462 υ. 177 CZ A 1 0.0000 Ū 0.0012 5 6,6214 5 0.0000 **6 0.000** 6 6,0000 0 0,000 1 0.0000 **L.UUU3** 0.0000 0 0. 117 CZ 0.0000 0.0000 1 0,0007 £ 6.6500 5 0.0666 o ciunuu 0 0,000 0.0000 O O. Pall 1 0.0000 00. 111 CZ 5 6.0306 3 0.0000 0 0.0004 2 0.0139 0 0.0000 3 0.0006 0 0.0000 6 0.0000 0.01066 U balill 0.0064 U L. 0.0000 777 13 1 U D. Unch 1 0.0000 D D.Dr.Dr b battle 0.0000 1 0.0666 0.0000 0.0000 UJ. 0.0000 U 0.UHuJ 0 0.0666 U Datet 117 (5 £ U.0000 0 6.0006 1 0:06-00 0.0000 0.0100 0 0.0000 U O. BLEE 1.0006 0.00000 0 0.0000 0 3.6606 0.0000 0 0.0000 0.00000 n 0.0000 οJ. U L.L.DU

.

		~	*		وخداء		***		,	7		-			•	-	~		-
<	F. C. A.	0	0	ن ت	0 0		00	0	o	ر د	ີ 0	0	0	00	0 0	:	0	0 0	0 0
CLA SCEPA	*F [641]	0000.0	0,0000	0.000	0,00,0	0,100	0,000,0	000000	0.09.0	0,000	00000	0000	000000	0,000	0,000,0	0,000,0	0,000	0,000,0	0000.3
	٥	* ,	c	9	c	c	۴,	c	_	Ļ	చ	0	-	۳.	ď.	σ	-	ے	ے
T. S. L. E. T.	110 11 101 1	מ מינוני	ח היווו	ט טינוני	ני ני ניני	ח הינירו	ם מינונו	3111000	ח ריינוור	ני ניוני	ו רינוו	ע רינור	מ ניייני וויי	J 6.15E	0 0.0 1.1.6	U tott	חרוזים ח	טינייני	ט נייונינ
LESON PARCE GASTECETEN FLETCENET	56 AF 16FT	0.00000	3030°C 0	1 0.000	30J0°0 0	3000.0	3000.0	0000000	1 0.1000	3000°0 n	1 0,0184	1 0.0007	0 0 0 0 0	47 U. HOUD	15 0.000	35 0.000	1 0,000	3 7,000	1 0.0000
n Us GASTECEE	NO METORI	0 0.000	0 0. ncov	0 0,0014	10.10°0 0	0 U.nouu	3032.83	100 m 0 0	ייס שניים	0000000	16 0 0 0	U 0.0C1	0000°n 0	5 U.0416	5260.0 0	6 U. DEEL	4600 a	630.0	0 0.0627
	1.1. 4t 16m3	0000.000	0000.00	0.0000	0 160.0	0 0 0 0 0	ລວຍຈີບ າ	0000.00	0,0000	0 000000	0 0 0 0 0	0 0,000	0000 0 0	0000.00	0000000	0.00000	000000	000000	00007.0
LECKISAN	11911	00000	3330.0	000000	2000.1	0000.	0011.1	333000			000000	3910.0	3010.1	1000.1	1010.1	1001.1	2222.2	1000.2	1011.1
:		7	3	-	0	9	•	7	3	2	7	:N	٧	9	9	3	9	7	3
. 11714477	so witers ac	0.0000	0.000	6.6019	1.0000	000000	0,000	30000	0,000.0	0,000,0	*******	tt v.1617	51 U.CUSE	000000	0010.1	000000	3000.3	00:00	000000
. ~	3	ı	'n	د	2	ح	2	د	_	3	ir C	ند	21	.	د	د	د	3	3
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ויה שניוחאו	40000	4000 n a	c c.0010	3000.00	3300.0	2000.0	0000.00	000000 6	0000°0 0	10.0384	オオオレ・コーツ	4 0.0566	1 0.7000	000U-0 6	3000 to 34	40 0.000	0000.0 60	04 0. notic
CINETA	fire at thin		tonned as		0.0000	(m)(m,0 m)	ם סיחורה	000000		S4110 0 0	2000 O O	2 0 0 0 4 Z	4 0 00 E	1.00°C		TC20.0	7170°C 0	0.0.0703	U 0.0111
The Carties	. Hotel		_	_	000000	000000	0.000	000000	いっこう	100n n	1300.1	t, obte	C.000.0	0,000,0	0,000.0	1000.1	さ・このこの	000001	000000
-		-	> 	, ,	٦ ٧	٧ ~	ņ	4	٠ ج	~) ~)	7	~ -	7	٦ ١	ų N	٠ ٧	3.	γ •	4) 4)
		11111	7 / / 7	111	111	111	, , , ,	177	, 17,) ///	111	111	111	177 6	111	177 1	111	177 1	111

the state of the s

Appendix Table 310

APPENDIX B11: PHYLOGENETIC LIST OF BENTHIC INVERTEBRATE SPECIES AT MILLER SANDS, OREGON, 1975 - 1977

Appendix Sable Bir

Phylogenetic List of Benthic Invertebrate Species at Miller Sands, Oregon 1975 - 1977

• •		•	•	,	4
Phylum	Class	Order	Family	Genus	Spec:
Nemata	Nematoda				
Platyhelminthes	Turbellaria				
Anelida	Oligochaeta				}
	Polychaetea	Errantiformes	Nereidae	Neanthes	limni
Mollusca	Gastropoda	Mesogastropoda	Pleuroceridae	Pleurocera	
		Ctenobranchiata	Amnicolidae		
	Pelecypoda	Heterodonta	Corbiculidae	Corbicula	flumi
•		Eulamellibranchia	Unionidae	Anodonta	
Arthropoda	Insecta (aquatic larvae)	Diptera	Chironomidae		
		Collembola			
		Hemiptera	Corixidae		
		Odonata			
		Plecoptera			
		Ephemeroptera			
Arthropoda	Crustacea	Cladocera			
		Ostracoda			

Clupeiformes	Osmeridae		
Petromyzontiformes	Petromyzontidae	Lampetra	
Peracarida	Mysidacea	Neomysis	mercidis
	Haustoriidae	Eohaustorius	washington:
	Gammaridae	Anisogammarus	convervico:
Amphipoda	Corophiidae	Corophium	salmonis

erteb**rata**

Agnatha

Osteichthyes

APPENDIX B12: NUMBERS AND VOLUMES OF ITEMS CONSUMED BY FISH AT ALL ARFAS, JULY 1976 - JULY 1977

Numbers and Volumes of Chims Consumbed by Fish at all Areas July 1976 - July 1977.

	Jul 76	_Val.	Sept 16	::0 v 7	6 Yal	HAR TT	70. Yel	Jul 11 701
MARESPINS STICKLEBACK				·				<u></u>
26-50 ng	(7)	[6]		(2)	[0]	(3) [0]		
Dantala langinging	26	ir		••	• •			
Constitut selmonts				5	.08			
Chironomia pupas				5	tr	•		•
Furntamora himandaldee				•		301 .09		· ·
51-75 = 1	(1)	[0]		(3)	[0]	(7) [6]	(3) [1]	(1) (1)
Digusted material	••						• . •0	5
Dantala lengtaging	41	tr		9	tr			• '
จักกระกำรับจำรัฐปัญญาได้			•			6 .10		•
introduction confernicalis		•				2 .18		•
Cetrocods				- 4 -		18 _, tr		
Gurut iblie binaderides				269	.08	4		
Berry's lightly stells					1	1 tr		•
NUM SACTION					1		(1) [0]	* .
26-50 ma					1		1 to 101	1
Digested insucts						(2) (0)		<u> </u>
51-75 na Chironomii pupae	•					6). 4 =		
Chironomii Jupae	•					٥), ده		
25-50 ta						(8) [2]		
Chiconomia pupae						6 16		1
51-75 na					1	(6) [0]		(1) [0]
Chironomid pupas			_			```'	l .	h tr
Corophius salugate			•		1	2 10		
76-107 64							(8) (1)	(1) (0
Henry of a margadite					1		6 .0	6 1
Dijost saterial					1		3 tr	8 tr
Corott: estmonts					1			13
Chirchost & puphe					1		5 tr	3 tr
dymanopters-Formicidae					1			1 10
171-150	••		(6) (o	1	1	(1) [1]	(1) (2	
2:xhn <u>lensing</u>				• -	l l			- 68 tr
Helipfala parcedia .				45	1	2 tr		
dicested naterial			• •	70		• tr		6 .
Chironomid pupae					1			• :
Mynemoptera				05 10	1 .			
Coleoptura Hemiptera-Corixidae			2 :	10	' ' '			+
Hypenoptera-Formicidae			• •	10				1 1
Dicested insects						•	•	
151-200 กา					- [(2) [0]	٠.٠	1
Sticks		•				1 tr		1
Antegranmerus confervicatus						3 .0		
Corposun salmonts						6'.1		
201-250 na					•	(2) [0]		
Antarganganus conficytoolus					1	2 tr		
ก็กลุ่มกริญัญ รี จัง ก็สุดกั ญ					- 1	3 .0	5	1

	10,	Yol	70.	Yol,	70 ¥ 1	Vol	HAT (Yol.	Hay Ti	Yol.	30.	
descarins intertanack (continued) 51-15 na 2000nia lengtaging (diseased) Enthin lengtaging Enthin lengtaging	(1)	[0] tr			(1)	(1)		(1) k 37	[0]	(2)	- · ·
Chronita sal onts Chronotid pupae 76-100 ms Abbrocht Sucker Lol-500 ms 501-600 ms	•		· - { ; }	[3]			. •		tr	(1),	ָ (
26-50 nm ' 51-75 nm ' 101-150 nm '	(2)	[3]	(6) (17) (1) (2)	[6] [17]	(1)	[1]	(1) (1)		1.1.1	•	:
201-200 ns 201-300 ns 201-300 ns 201-400 ns UNF 14504 101-100 an	,		(1)	[1]	(1) (2)	[1]	(r) (r)	(14) (10) (1) (1)	[14] [12] [1] [1]	(1)	1
RCIPIC TERRITORS SECURPTS 26-50 na Chirosonti Larvag 51-75 ts Carobina salconta		·			(2)		(3) (3)	(5) 16	[0]	(5)	1
OHO TAUNOM 51-15 he Chironomia pupae Chironomia inreae 101-150 he Coronium salmonia Chironomia pupae	. •			•				(1) 6 21 (1)	[0] .01 [0]	•	
ARP -01-500 ms 501-600 ms 601-700 ms				•	•		•	(5) (3) (1)	[3] ·		
										•	
- 4											

	311 /6	Yal.	3098. 308		30 i 16		110 T	7 701.	Hky (7 701.	Jax 1	7
TAY TE PLOUDDA					•		1			•	• • • • • • • • • • • • • • • • • • • •	-
26-33 01	(10)	(J)			(2)	(8)					(11)	(5
Chironomii inevae								•			111	
02502703	(2)	10										
discreption actions	(2)	[0]			(15)	[11]	(5)	(2)			(11)	, (' <u>'</u>
and will enconde		,			•	1.0	i				•	
Chironould larvae						te '				• •		
Antionactives conferences					ī	tr					87	
76-100 an					(2)	101	;		(2)	[3]	,	
Chironosid larvae		•			```'	.06			`′′6	i.r		
Oliveted metarial					•	•••	•			ir		
101-150 n4					(2)	[6]	(2)	[0]	(11)	[10]	(2)	()
Chironopid pupas								• • •	2		• •	. `
Consoling antions a						tr	3	.05				
Cotrons tid larvag Dismated metarial					64	. 45			3	tr		
151:200 46					· · · · ·							- į
Olizochantes					(14)	(11)	(4)_,	[1]			(1)	[1
Chironotii yupag							3,	. 40				i
Units fish						ł	•	tr		•		1.
Frontate ograndie						.05		1.20				- 1
Calcono ild larrae					56	32						1
And to to the same and forest color					,,	1	٠,	tr				- !
483460436				•	6	او يه	•	٠.				-
Digested material					•	.62	•	. 20				- !
irensyius stecknymack						1					•	
26-50 ***	(3)	[3]	(1)	(1)		1	(4)	[0]				- 1 '
Chirometid pupas Corostium galaunia						1		t r			,	
51-75 29			(8)	(11		1	, , , 7	. 12				١,
Chironomia pupae	•		(0)	1 4 1			(8)	[8]			(3)	,(
Carnablus enlante				÷.		1	2	.10		•	•	ļ
Aurescapes hirundoldes			822	.18		1	•	. 10				
Unid. edde			•••						•			- 1
TINCOK SALNON					•	1		••				ł
26-50 ma						1	(18)	[1]				İ
Carochiva selection.					•		ġ	ii				
Chi: homid pupae						.1	21	. 11	•			-
Corontium malmonte				•		1	, (7)	[0]	•.		(2)][
Chironosid pupae						•	3.1	. 18				i
76-100 88			(5)	[2]			17	.09	(10)	fo1	(4)	
Corcobium salmonts			(4)	(4)		ŀ			(10)	.11	(4)	,1
Euryteanra hi madoldee	•	•					•	,	71			1
						•1				• •		
lumber examined arentheses												
J Bunber extensioned arentheses 1 Bunber empty ets						1						,
Volumes in a						1	1					
						1						

	Jak /6		30.5	/6 Vol	10v 10		200 17	751.	35y 71	Vol.	Jul /	1
BIGGOC BALHON							,					
101-150 nn	(1)	(0)	(11)	[1]	(%)	(0)	(1)	[0]	(12)	[3]	(10)	
Acachaids					1	tr	;					
Symthethid fibre Sticks					, 1	tr	: .					
Animathanan wa enaferyicalas			ì	.50	•							
Setatodes			,	1.5			•				•	
Discost material	••		•	. 50	•	.50 .	• .		•	.05		
Carachter extrante	3	te	5	٠,	261	. 40	7	.11	11	. 31	6	
Diptors			ı	tr	3	tr ·						
denonvets recedts in itatens	2.2	7.60	2.3	. 40	!	.08			•		•	
Chinoné (1 pupas					ı	tr	:					
Fringly tong typing							4	tr	8	.05	1232	
151 -290 1.1						1	(%)	[3]	(1)	[0]	(23)	
Antogramma openhermatentum						1	```\	6 6	(• /	(0)		
others and secondary						1	-	- •	•	.05		
Corophium i dinonia						1	€ 9	1.80				
ેલ પ્રાથમિક કેલાક <u>લેટલેવી કર્યું</u> ઉત્તર તેવારે કેલાક કેલાક કેલાક કેલાક કરો	•					1 .	, 1	t.r				
Chime to side pupage							1	.30				
COLECTO SEE DUDGE						1	8	tr				
21.15 an			(23)	[23]		1						
76-100 ns			()	10.33		1					(4)	
101-150 ne			(3)	(3)	(1)	[1]					(19)	
151-200 и.е	(2)	(8)	(5)	$\begin{Bmatrix} 3 \\ 1 \end{Bmatrix}$		1					(3)	
201-250 ms 251-100 ms			(1)	(i)	(1)	[1]					(3)	
7.751.00 MM A. P.3CASH GUGKKR											(2)	
31.75 ma					(1)	1, , ,	•					
16-100 au					(1)	{\bar{1}}						
251-300 ns	•		(1)	(1)	` ` ` /	1, . ,						
301-400 00			• • •		(2)	(2)				•	(1)	
101-500 nm			(1)	(1)	(3)	(3)						
METANGES ESSESSO						1.						
151-200 BA ACIFIC STAGNORD SCULPIN			<pre>(1)</pre>	[1]		1						
26-50 as						1.	/	[0]	(17)	[4]		
Careablus salionis				•		1 '	(1)	5.0	13	3	(11)	
rirosould larvae						•	•	••	- 1	tr.	. ,	
51-15 as						1	•		(2)	[0]	(2)	
Corestina estronte						i			\	.07		
Chiroconid inrviale						1			3	tr		
[8:180 mg.					(3)	(0)					{ <u>}</u> }	
' Harrista sarcadta					``´`	1.08	;				.,,	
Mice bei in in in in in					•	1	ļ.				13	
Annual with a second of the last of the la						. ! .	٠				-	

	3ul 76	16 scr	10v 16	9.1	HAT 17	THE WATER	3507
CAP STOOLS		Se emplified managed (CM).			- - 1831	- HOV	وي الماسي
101-100 ns	•						
Sunctances his indolates "				[0]	٠,	-	
Cotable Caraca			020	.10			
101-150 ma		•	(4)	[4]	•		
1181039 BHAD 76-100 BH			``'				
10-100 mg			(8)	[0]		. •	•
101-122 mg			11.62	. 50	•		
Surviver sea liter adoption				[0]			, .
Strategraph his adol tog Grand his antronic 1914-00 as	•		511	.10			•
1)1.000			ı	t r		•	•
Composition and court					•	(1) [0]	
331+463 A.S			!	•		1 .1	
Plansad instant is			i				(5)
Zinh schlas DB Sannog			ĺ				
26+50 mg							٠.
51-75 ma		•	'		(0) (0)		
Soro bill thank ontail			ĺ		(1) (6)		
Coroletti s ant entare			1		1 tr		
15-172 n.s			ļ		5 tr		
Signuted copeyads			1			(1) [0]	ļ
HONJAE CE	(* tr	
101-150 34						(7) (2)	1
Digusted interial			!			, , , , , ,	
(a conting only 1991)						5 .i	
Intimidua ast onte			ŀ			(7) (3)	
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			!		•	62 1.2	
		•	!				
·			ŀ				
		•	ì				• • •
•	•		i				
•	•		•				
•			}				
			. 1				
		•	i	•			
	•		۱.				
			ŀ		•		•
			ا. ا				
•			1				
			1		•		
			•				
			i	,		•	

	Jul 76		Sept	76 Vol.	30v 76		Mar II	ol.	No.	Vol.	Jul.
REESPIRE STICKLEBACK									-::2		
51-75 mm	(1)	[0]			(5)	[1]	(12) [1]			(6)
Digested material							,	. ·			. 197
Hurrcerous sp.											21
Stickleback eggs .					_				•	*	9
Chiropomid larvae					-						. 17
<u>Paohala</u> sp.							12 t	r			•
Enchain leasianing (diseased)	. 23	Ç.F					•				
Eurytenora hirundoides					10	tr					
Animorancisus confervicolus			,	1		•					1
Coronhium selmonis Chironomid pupne		•						. 24			. 4
Catracods	•							7			,11
25-50 an	(2)	[0]	/	1		1.15					
<u>Panhnia longispina</u> (digested)	46	[0] tr	(1)	[1]	(1)	[1]	(6) [0]			
Asisogandaris confervicolus	~ 0	C P				i					•
Corocains salmonis		• •			- 1	1	,1 t				
Chironomia pupae						1		.20			•
ATHERA SQUAWFISH			•			i		.12			
75-100 mm	(8)	[7]				!	, ,				
Unid. seeds	21	.05				1				- 1 - 1 - 1	
R 2		•••				1					
51-75 mm	(1)	[1]				1					
501-600 mm	(1)	i i i		•		1			(1)	[1]	
RGESCALE SUCKER	• •					1			(~ /	(- 1	
26-50 mus	(2)	[5]				ţ					
51-75 na			(2)	[8]		}					•
76-100 na				• .•		!			(1)	[1]	
101-150 mm	(5)	[5]							(1)	lii	
251-300 ma .	(1)	[1]							,,		
401-500 mm							(3) (3]	(3)	[3]	
501-600 mm	• •					ļ	(i)	11			
Амочти сина				;		1		•		•	٠.
26-50 .ma			(3)	[3]		1					
51-75 mm			(5)	[5]		1.					
76-100 mm	(15)	[12]			•	i					
101-150 nm 151-200 nm	(14)	[14]			-	1					(2)
151-200 mm AARY FLOUIDER	(4)	[4]			•	•					
26-50 mm						ŀ			•		
Chironomid larvae			(1)	[1]					٠.		(4)
51-75 mg	(1)	[1]				.					67
Chironomid larvae	(1)	(1)				.	•				(10)
Companium salmonis											55
76-103 ==						l	•				
Chironomia larvae		•			•	•	i				(3) U
Corobius salmonis											4.4
to mere with the same and was bid to				-		1					ı

	:	in 1 76	Vol.	Sept.	Vol	Hov 76	101.	lio.	Vol.	No.	Vol.	Ю	Vol.
(continued) RECEUCIT YES	·							1		•		(10)	0)
101-150 mg '								ļ				81.	
Chironomid larvae	•							(1)	[1]	•			
151-200 pm	,							1					
ERICAN SHAD			•	(1)	til	•							
26-50 aa ·		•		(5)	iōi						• .		
51-75 mm	• • .			· ' ' 1				i					
Corchium salmonis Daphnia longispina (dige	sted)	•		42	tr	•						•	
Eurytemora hirundoides			_	3	tr		•	Ì	•		-		
UM SALMOU			•					(7)	[0]	•			
26-50 ma ·								6	.09			•	
Coroshium salmonis							•		. 38			` .	:
Chironomid pupae						1		18	tr	• •		•	1
Chironomid larvae				•		!				(1)	[0]		i
76-100 mg			•			· j		, ,		61	. 37		į
Chironomid pupas	:					. 1							!
INOOK SALMON								(18);					
Corcanium animonis	•	•			•	•	ı	27	.41		•	•	1.
Chironomid pupae		•			•	Į		104 49	.71 .08				ļ
Chironomid larvae						•		(4)	[6]	(1)	[0]	(h)	Įο
51-75 22					•			7,7	iii			• .	l
Coronhium salmonis		•		•	•			17	.12	14 14	.26	104	1:
Chironomid pupas						•	1	•		(19)	[8]	(10)	5. (0
76-100 mm Chironomid pupas				,. •			1	•		176	1.1	501	tr
Recovers nercedia				•	•		١			(8)	[0]	(10)	[0
101-150 pm	•					(1)_	[0]	•	•	(0)	(0)		7
Digested insects						*	.10					1	ų,
HemipteraCorixidae					•	1 2	.05)
Coleoptera		•				7	.05				•	•	Į
Hymenoptera		•			••	10	1.05					25	-1.
Diptera Coronhium salmonis						Ĭ.	1.			16-	1.00	816	3
Chironomia pupas	• • •									107	1.00		1
151-200 mm					•	(1)	[0]						- 1
Hemiptera				٠.		1.	tre						. !
Fish bones						1,	.5			_			`
ACIFIC STACHORE SCULPIN .	_						1	(5)	[0]	(1),	[0]		1
26-50 mm	-						1	6	09	3	.05		ļ
Coronhium salmonis	•	•	•				•	3	tr		[1]		1
Chirchonic pupas 4							1	1:	•	(3) 14			
Chironomid larvas							.1	į.		14			
400000000000000000000000000000000000000	•					•	Į.	1					
÷							1_						
1 Sumber examined in paren	theses						-1						-
lumber empty in brackets				*			•	:					

-	w
1	_
:	J

			•		-			•	
	Jul 76 Ro. Vol	Sept.	76 Vol.	Hov 76	Mar 77 Vol. Ro.	Vol	lay 17	Vol.	Jul 77
ACIFIC STACHORN SCULPIN (continued) 76-100 na Corophium salmonia Chironomid larvae Digested material 101-150 ma Digested material	•			•			(2) 11 7	[0] .20 tr tr	(3) 22 6
OHO SALMON 101-150 na Chironosid pupae	•					·. ·	(2)	[0]	•
	•			1		٠.			
	• •				.			•.	
	-			·	·	•			
		٠				• •			•
		•							•
			· ·					. •	• •
				•	•		•		
	. •	· .	•		•				
,	•			•.					

[] Number examined in parentheses [] Number empty in brackets Volumes in al

•	Jul 76	5 Vol.	Sept.	76 Vál.	: ov 70	5	Mar 77		11sy 11	17 - 1	Jūi 7
RREESPIUS STICKLEBACK		<u> </u>				Vol.	жо,	VOI.	70.	Vol.	70.
26-50 ma	(6)	[3]	(5)	[5]			(4)	[1]		٠.	
Daphaia longispina (digested)	``18	tr	177	171			. (*)				
Coroshium salmonis		**						.10			
51-75 sa	(1)	[1] -	(1)	[1]	(5)	101	16		1-1	(- 1	(10)
Digested naterial	(1)	[4]	(1)	[1]	(5)	[0]	(6)	[0]	(5)	[5]	(10)
· Eurycerous sp.		•									
Stickleback aggs		• •					4 :			. •	9
Survictors hirundoides					'		• • • •			•	5
Coronhium salmonis				•	59	tr			•		. :
			•				16	.22	. •		14
· Chironomid larvae							1, 1				. 14
Chironomid pupae	. •						14	.10			7
Gstracods						•	11	tr			•
ORTHERN SQUAWFISH						1 7					
151-200 nm	(7)	[7]				i	•		٠.		
201-250 mm	(1)	[1]			•	1	1				
251-300 пл	(1)	[1]				1					
301-400 mm .	(2)	[8]				1	!				
Digested naterial		2.51				·					
401-500 mm ; .	(1)	[1]				1	. *	•			
ARGESCALE SUCKER		•				1	•				
101-150 mm	(6)	[6]				Į	i				
151-200 mm	(15)	[15]				1	÷ .				
201-250 mm	(1)	[4]				1	1				
251-300 ma	(1)	(ii				1 .	i				•
101-500 mm	\ <u>1</u> }	1 7 3	/>>]	•				
501-600 mg			(1)	[1]		1		1.1			
RP (•		• •	1.	(1)	[1]			•
401-500 na				• •	٠.	ì			·		
501-600 mm					•	ļ			(1)	[1]	
	(1)	[1]				1					
BUHD RTUCHAS						1.					
26-50 mm	• '			[1]							
51-75 ma	1 1		(22)	.[22]	(1)	[1]			(1)	[1]	٠.
76-100 pa	(9)	[9]	(1)	[1]	• - • .	1			(1)	(1)	-
101-150 mm	(15)	[15]	(5)	Ì 5 1		1.	:		(2)	[2]	(1)
151-200 nm			(11)	[ii]	· (1)	[11]			(1)	iii	(i)
201-250 mm			(7)	(7)	•-•	1			• • •	• •	(1)
251-300 nm		•	(i)	(ij		1.	•				,-,
CIFIC STACHORN SCULPIN		•	,	1-1	Ϊ,	. "					
26-50 mm			(1)	[1]	•	.1			•		
76-100 pm			1 -7	1 ~ 3					(1)	[1]	•
IHOOK SALMON						.1			3.03	(*)	
26-50 mm - , (•	•	.1	(12)	fol			
Corophium salmonis						1	(12)				
Chironomia pupae		4				i	43.				
51-75 mm		•				.1			(23	(0)	
				•	•	1	(11)		. (3)	{ o }	
Corophium salmonis Chironomid pupae			•			ı		05			
currencura bubas						1	. 17	.13	17	.10	

Corophium salmonis
Chironomid pupae

() Sumber examined in parentheses
() Tubber examined in parentheses

	,	
_		
ď)	

	Jul 76 No. Vol.	Sept No.		Nov 76		Mar 77 No. Vol	May 7	7 Vol.	Jul 7 30.	17
HIRON SALMON (continued) 76-100 mm				armin financina		1	(13)	(3)	(10)	ſ
Corophius salmonis Chironomid pupas				•			1 h 30	.25	101	
Digested material 101-150 nm		· (3)	[3]	•		;	(6)	.05	(10)	
Corophium salmonis Chironomid pupas							11	07	6 61	
Arachnids Odonata adult Essiptera-Corixidae	•						1	tr :	1	t
151-200 mm Coronhium animonis	•					(1). [0]	1	•	•	
201-250 mm Coronhium salmonis			•			(1) [0] 24 .3 1 tr	1		<i>:</i> .	
CARRY FLOUIDER 51-75 ma				(1)	[0]		-		(1)	- 1
Chironomid larvae			•	`iı	.08	, , ,	. (2)	[1],		į
Digested naterial 101-150 nm						(1) [1]	•	tr [11]	(2)	
Chironomid larvag						(3) [1]	1	-	. 6)
Chironomid larvae Coronhius salmonis			•			4 tr 6 .1				
Chironomid pupas Sticks		•				3 tr				
3 and 201-250 mm						(1) tr	1		•	
ERICAN SHAD 51-75 mm	•		•	(%)	[4]					
76-100 mm <u>Reodysis percedis</u> r <u>Eurytemora hirundoides</u> .			••	(13) 14 234	18 .18			-		
Corochium salmonis 101-150 mm		¥.		(1)	tr [0]		(1)	[0]	•	
Records Energedia Rurytemora higundoides Digosted material			•	. 51			. •	tr		
151-200 ma						(3) - (3)	1			
FOM HOME OF THE TOTAL OF THE TO	•						(1)	[0]		
Chironomid pupae 101-150 mm			•	•	.1	İ	(8)	[i]		
Corobhium salmonis Digested material		•				.	9	.16		

	Jul 76	701	Sept	76 Vol.	Sov 7	6	17	Ray 7	7	Jul	
COHO SALMON (continued)	10.	701.		V01.		Vol.	No. Vol.	No.	. Vol.	70.	Y
151-200 mg						•		(3)	[1]		
COTOSHIUM SALMONIS		•						6	.11		
201-250 ma Corcebium salmonis		٠.			•			(1)	[0]		•
								5#	. 43	•	
			•	•		•	•			, .	
		•				•	• •	٠.	•		
· :										• .	
•							٠.				
•							•			•	i
			•)				1
·									•		į
							. ·				-
	•									•	1
. •						-					- 1.
				•		İ					ł
		•					•				
•				• ′							1
				1.					•	•	
						• •	:	•			
•					•	ļ					[
•				•	•	1					1
•					•	1	,	•			•
								•••			
~						1					
		•		•		•	i				\mathbf{I}
•					•	1	. ! .				

^() Number exemined in parenthenes () Number empty in Secrets Victoria in at

The state of the s		Vol.	No.	Vol.	_ No.	Vol.	No. Vol	Vol.	Xo. Y
PEAMOUTH CHUB 101-150 Am	(1)	[1]	(2)	[2]				•	:
151-200 mm PACIFIC STAGHORN SCULPIN		*		- •				(1) [1]	
26-50 mm Corophium salmonis		•			•				(1) [0
Chironomid larvae	•••				(1)	[1] .	•	••	. 4 tr
PRICKLY SCULPIN 101-150 mm	•				(1)	(1) .		•	•
THREESPINE STICKLEBACK 51-75 cm .		•			(4)	(4) .			
;									(i) (1
•							,	•	
•	÷,	•			•		٠.		- 1
•			. •).	•	
								•	i -
							•		
• •	•							•	
,			•				_		
			•		•		•		
•				•					
				•.				•	'
•			•				•	•	
				٠.		"		•	
		•							.
10 may 10 may 10 may 10 may 10 may 10 may 10 may 10 may 10 may 10 may 10 may 10 may 10 may 10 may 10 may 10 may		•		• .		١-			

Vol.

Mar 77 No. Vol.

Nov 76

321

	Jul 7		Seps	76	Hov 7	6	Mar 7	7	Hay 7	7	Jul 1
STARRY FLOUNDER		Vol.	no.	Vol.		Vol.		Vol.	30.	Vol.	Ho.
26-50 ma											
	(13)	[0]					i				123
Chironomid larvae	275	.27					•				(3)
	(10)	[0]	(12)	[8]	(1)	[1]	(3).	[0]	103	7.03	
Coronhium salmonis			14	tr		,	. 5		(2)	[5]	
Chironomid larvae	146	.15	. 86	.17	•		٠, ٦	.08			
Diptera			16	.05						_	••
. Chironomid pupae 76-100 mm	• • •			,			17	.05		•	
70-100 mm SHDD					(1)	[1]	-1	.05			
26-50 nm					,				•		:
	(2)	[0]						•	٠.		
Dachnia loncispina 51-75 na		tr					•				
	(4)	[3]				٠.			•		• •
Myonysia mercedis CHINOSK SALMON	5	tr				1 -					
26-50 mm						j			•		
				•		į	(20)	[2]			•
Coronkium salzonis						1	17	.27			
Chironomid pupae	•					į.	107	4.3			
Corophium salmonis					• ,	1 .	$\{\tilde{7}\}$				
Chirocomid pupae				*	•	}	''i3	,21			
Unid. Insects				•		1	56	.22		•	
76-100 mg		•					3	tr			
Corochium salmonia						1	•	•	(14)	[4]	
Chiconomid pupae						1			7	.13	
101-150 mm						i			316	2.5	
'ptern (digested)			(1)	[1]	(2)	[0]	(1)	[0]	(10)	[2]	(4)
r chiun salmonis								• • •	, ,	,	
renegid pupag					٠.	1			7	.13	
ligested insects						1	•		99	.13	.11
Coleoptera						}	•	.10			
Nymenoptera				•	3 6	.05					
Diptera						.05					
Anisoganantus conferéicolus				•	574	. 85				٠,	
151-200 pp						1.			. 1	tr .	
Corophium salmonis						1	(1)	[0]			
Chironomid pupae					٠.	1	36	. 80			
201-250 mm						1	1	tr			
Coronhium salmonis				. •	•	1 1	(3)	[0]			
Chironomia pupae							123	1.70	•		
Scorysis nercedis						1	. 11	tr	•		
Disested material						-	81	1.20			
ATTIUDE RECEDETE DIRIDA								.10	,		
25-50 mm						1					
Corothium salmonis		4				1	(1)				
51-75 as					•	•	, 3	.05		_	
Corothium salmonis		•]	:		(1)	[0]	
						i	•	•	2	tr	
) Burber examined in parentheses	~~~	~				<u> </u>					

	CHUM SALMON								·	<u></u>	
	26-50 mm							(1) [0]			
	Chironomid pupac 51-75 mm	•					* .	16 .00	. .		
	Chironomid pupae							(2) [i]		*	
	Heonysis nercedis					•		1 tr			
	76-100 mm Chironomid pupae							i :	(1)	[0]	•
	Dachnia longisaina								61 46	149	
	PZAMOUTH CHUB								40	tr	• ·
	26-50 mm 51-75 mm		(10)	[10]	(-1.)						
	76-100 mm.		(8) (2)	[8] [2]	(24) (1)	[24] [1]		and the second	.(1)	[1]	
	101-150 mm		(3)	ไร้ไ	(î)	(i)	:		(6)	[6]	
	151-200 mm LARGESCALE SUCKER				(1)	[1]	i	:	•		
	26-50 mm		(2)	[ġ]							1
•	THREESPINE STICKLEBACK			()			1	i			j
(LI	26-50 mm 51-75 mm				(1) (1)	[1] (1) [1]	[1]	1			i
23	Chironomid pupae				(1)	(1)	1	1	(\$#)	[14]	(1)
_	Eurytemera hirundoides							!	79	.05'	Í
	EULACHOW 151-200 mm	•							.,,	••	
	191-200 8.1		•					(1) [1]			• }
	•										
					•						- !
								•			
								•			
						•	i				
			· .				İ				
		*				•.	.				`
		. • . •					•	÷ :	•		
	•					•	·.	•			
									•		

Sept 76

Nov 76 No. Vol. Mar 17

May 77 No.

Vol.

Jul 77

No.

Jul 76 No. V

() Number examine (in parentheses
[] Number empty in brackets
| Volume (a.)

CHUM SALMON

	Jul 76	Vol	Sept 7	6	30v 76	ν.;	Mar 77	Vei	May 7	٧.٠	Jul 7	77
PARTORDE SCUDARG 101-150 mm Unid. fish		<u> </u>	(3)	[0] 2.0	(1)	[1]	30.	<u>vo1.</u>		vol.		<u></u> "
Tecnisis percedis 151-200 mm Tecnisis percedis Unid. fish Gatropode		:	2 6	. 3	(3)	2.0	٠,		• .	. •		
Gastropods Digested naterial CONO SALMON 101-150 na					2	2.0			(1).	[1]		
201-250 mm	•						:	•		•	(1)	. (
•						İ			•			:
							; ;					
		-							•	•		
•			•				:	•				
							•					
			•			-						1
				•	_				•	•	· •	
					•							
				•		1						•
- N									•			
		:	٠		٠,	·	į '					

	Jul 76	Vol.	Sept '	76 Vol.	110v 76		Mar Ti		May 77		Jul /	7
PHREESPINE STICKLEBACK											<u> 10.</u>	
51-75 mm	(6)	[4]				•	1		•		(5)	(
Dathnia longispina	147						•	•				
Corconfut salmonts TARRY FLOUNDER							•				26	
26-50 mm	(10)	[2]	•				•					•
Chironomid larvae	322	. 32								. •		
51-75 mm	(14)	[4]			(3)	[3]	•				(7)	(
Coroshium salmonis Chirchonid larvae	341	. 34				•					, 3	
76-100 mm	(1)	[0]				•		٠. '		•	(1)	
Corothium salmonis	1								•		(1)	(
Chirchenid larvae	•	, -									67	
101-150 nm						! "			(1)	[1]	٠,	
151-200 mm	(1)	[1]							•	. •		:
PEAMOUTH CHUB	100	(6)		,								
51-75 mm 76-100 mm	(6)	[8] [8]	(12)	[15]					,			1
101-100 mm	(8)	[8]				1	λ		(1) (1)	[1]		i
151-200 ma	. ~/	. ~ 1		-	٠.	İ			(1)	[1] [1]		1
m D2S-10S DARS RADIRSMA									(1)	(4),	(10)	i
31-75 ma			(7)	[0]	(1)	[0]	•					-
Coronhium salmonis	•		2	tr	•	1					•	
Dashria longispina (digested) Eurytenora hirundeides			136		۸.	1.		•				1
Eurytemora himundeides Distera adults			•		64	tr						ĺ
Diptora adults 101-150 mm				•	8	tr			103	[0]		ļ
Eurytemora hirundoidea						1			(2) 171	[0]		- 1
HIHOOK SALMON						1			TIT	.05	.•	- 1
26-50 mm				•			(13)	[0]				İ
Chironomia larvae						1	3					- 1
Corcohium animonis				•		1	2	tr		•	•	i
Chironomia punne /					•	1.	24	.07			•	ł
51-75 mm					٠.	1	(4)	[0]	(2)	[0]		L
Chironomid larvae					٠.		28		1	tr		ſ
Chironomid pupae							28 8	tr	4	tr		-
Recorysis mercedia				•			8		•			
76-100 ED						1		• • •	(13)	[3]	. (5)	1
Coroshium salmonis	-					1	•		9	. 16	21	.
Chironomid pupae						.1		•	14	.08	16	
. ~ · •						1						ļ
						1	! •					J
					•	1	į					}
•		•				1	!					- 1
•						1						- 1

	ini 76	Vol.	Sept 1	76 Vol	Nov 76	Vol	Mar II No. Vol.	Say 17	7	Jul 1
HIBOOK SALMON (continued)										
101-150 mm			(1)	[0]	(3)	[0]		(10)	[1]	(10)
Gravel				.40			•		-	
Diptera adults				-	187	.50				•
Coroshius salmonis		•			. 6	.05		22	. 40	71
Coleoptera					L.	.07				
Chironomid larvae					8	.06	• •	21.	tr	•
Chirosomid pupae	•••						•		•	ļ.
ACIPIO STAGELRI GOULPIN				•	•			•		, .
26-50 mm							(5) [2]	•	•	-
Coronhium salmonis		*					3 .05		•	•
51-75 04							•	(5)	[1]	-
Coroshium salmonis							•,	6	.11	,
76-100 mm						i	. •			(4)
<u>Corothium selmonis</u> Digested material						1				52
Digested material Gastropode		• •								
7astropode 101-150 ma -						1				(3)
- 101-150 mm			+			ļ	``			(3)
Octabiles salmonis						í	>			15
Digested material									•	1
projected material CONTAC MORE										•
26-50 mm						1	(5) [0]			
Chironomid pupae						1	(5) [0] 6 tr			
51-75 am	•			•		1	(2) [0]	(7)	[0]	
Chironomia pupas						1	(2) (0) 10 tr	46	.28	
Chironomid larvae			•			1	10 tr 3 tr	40	0	•
Thaleighthys pacificus lar.				•		1	, V.F	84	. 30	
OHO SALHOR					•	1	•	J 4	٠,٠	
101-150 mm.								(1)	[0]	
Chironomid pupae						1		(1)		
ARA	•			-		1		,		
101-500 mm				:		1			•	'(1)
501-600 mm /						1		(1)	[1]	(1)
						1.		, -/	1	` - /
						1				
						1				
						e				
		•		•		1				
				*		1				
						1 .	•	•		•
								٠, ٠	~-	
~ , t		٠				•	•			
•						1	1			
		•				.j				
•		•				•	į			
•						1	1			
							10.0			

^[] Humber dismined to parentheses
[] Humber empty to bunckets
[Volumes to at

	Jul 76		Sept	76	lov 7		Mar T		May 7		July	ī
STARRY FLOUIDER	10.	Vol.	70.	Vol.	<u> </u>	Yol.	ло.	Vol.	<u> </u>	<u> </u>	. 32.	
26-50 mm	(11)	[1]								•		
Chironomid larvae	216											•
51-75 mm	(11)	[1]					(0)					
Chi.onomid larvae	127	.30.					(5).	(1)				
Corophium salmonis	6	.05										
Cligochaetes		• • • •					*					
75-100 ma			(1)	[0]			•	tr	(7)	. 171.		
Corobium salmonis	• •			5r					(1)	113		
101-150 na	(1)	[1]	,		(1)	[1]			(6)	[4].	(4)	
. Chironomid larvae	,				(1)				, , ,	tr	(4)	
Chirone id pupae									3	tr	•	
Digested material									,	~.		
151-200 ma	(1)	[0]	(6)	[5]		•	(1)	[1]				
Corrobium salmonis			```1	tr		į	`-,	,				•
Odonata	2	. 70	_			1						
THREESPING STICKLEBACK						i						
26-50 ma	(7)	[0]	(1)	[1]		1	(4)	[1]	•		(1)	
Eurytenora hirundoides	419	.20	• • •	• •							• - •	
Corponium salmonis						1	3,	.05				
Oligochaetes						1		tr		•		
51-75 mm	(14)	[4]									(10)	
Stickletack oggs	. 7	tr					,					
Pachnia longianina	620	.06				1						
CAPP				•		- 1						
. 401-500 ma						1			(1)	[1]		
501-600 mm	(2)	[5]	•			1					•	
701-800 ma	(1)	[1]		• .		1						
LARNESCALE SUCKER						1						
51-75 me 101-150 nm	(),)	(1.1	(1)	[1]		1						
151-200 mm	(1 ₄)	[¼] [¼]				-						
151-200 mm 251-300 mm	- (4)	[4]				1			([1] ·		
301-400 mm						1	/	[1]	(1)	111.	•	
401-500 ng			(1)	1.1			(1)	[1]				
CHINOOK SALMON			(1)	[1]		1.	:					
26-50 mg					•		(19)	[6]				
Chironomid pupae								tr.			•	
Anisogenmarus confervicolus					•	. 4	5 1	tr				
Corobius salsonis							14	.22	•			
Insect parts					•		, '	tr	•			
51-75 mm	•					.]	(6)	[6]		•		
Chironomid pupae.		•				.1		tr				
Coronhium salaonis	•					1	, 7					
76-190 mm		1				j	1.		(11)	[1]	(5)	
Chironomid pupae					•	·•1	i		26	.16	13	
Corolhius salmonis							j		19	. 3 %	6	
วิธีเรื่อกองว่า น้ำโละพลต์						1		•	10		,	

. 327

	Jul 76		Sept 7	76 Vol.	Nov 7	6 Vol.	Har 11 V		May 11		Jul /
HUCCK SALMON (continued)						[0]		o 1	(15)		(10)
101-150 mm			(7)	[0]	(1)	(o)	1 6		(1)1	171	(10)
<u>Hectycis nercedis</u> Chironomid pupae			114	1.00 tr			3 t		13	.23	61
				. 30		tr	-		•	. 1	,
pigestel . terial		•			•	••	i li	.08	•		
Anisocanna ma confervicolus	•	•					13	.21	7	13	. 21
Coronium salmonis								o l	•	• .	
	•					•		r			
<u> Georgesia mercedia</u> Chironomid pupac							į	r			•
Anisenammerus confervicolus		•						r			
Coronhium salmonis	•						, 3 t	r			
EAMOUR HOUGH							•				•
26-50 mg			(5)	[5]			1.1				
\$1-75 mm	(1)	[1]	(9)	[9]	(2)	[2]	•				
76-100 ma			(5)	[8]		l l	•				
101-150 ms	(23)	[23]	(7)	[4]			:				
151-200 na	. (2)	[2]		[17]		- 1	ţ				
201-250 nm	•		(5)	[5]		İ	λ.				
251-300 ma			(2)	[5].		1	4.5				
301 - 100 mm									(1)	[F].	:
ACIFIC STAGHORN SCULPIN											
25-50 ma				•			(1)	[1]			(1)
76-100 ma				-		ļ	,				.(1)
HUM SALMON											
51-75 ca						1			(4)	[1]	
Chironomid pupae						- }			6	. 0	
76-100 54						ļ.			(1)	[0]	
Daphnia longispina					•	ĺ			17	tr	
0H0 3AL404						- 1					
101-150 ma				_		l			(3)	[1]	
Coronhium salmonis	• • •			•		- 1			9	.16	
151-200 53				:		1			(13)		٠.
Corcobium selmonis y				• •					60		
Disested material .						1.			•	.05	
					· .	i					
*						.					
					•						
• •				•		T.			•		
					•						
•						1	•		•		•
•						- {			• • •		
· · · · · · · · · · · · · · · · · · ·			•			• [
						- 1	1				
						. 1	, •				
						•	ļ				
•						1	,	•			

ι	ú
ľ	J
Ļ	٥

PRARY Flourida 26-50 ma Chironomid larvae <u>Danhaia longispina</u> (dipested) <u>Corobhina galmonts</u> Unid. Insects -51-75 ma Chironomid larvae <u>Cocobhina admonts</u> 101-15 ma 151-200 ma Chironomid larvae <u>Corobhina admonts</u> Corobina fluntae REMERFINA STECKLUSACK 26-50 ma 51-75 ma	(16) 14 13 16 (9) 26	[8] tr tr .14. [8] tr	(1) (%)	[1]	(9)	[8]	No.	Vol.	30.	Vol.	(13)	
Chironomid larvae <u>Danhaia longispina</u> (digested) <u>Conspalua aalmonia</u> Unid, insects -51-75 m Chironomid larvae <u>Conspalua admonia</u> 101-100 m Chironomid larvae <u>Conspalua admonia</u> Chironomid larvae <u>Gonomid larvae</u> <u>Gonomid larvae</u> <u>Gonomid larvae</u> <u>Gonomid larvae</u> 31-75 ma	13 16 (9) 26	tr tr .14: [8] tr	(h)		(9)		! 					-
Canhaia longisting (digested) Coronding salmonts Unid. Insects	13 16 (9) 26	[8] tr		[4]	(9)						5	ŧ.
Corobitum salmonts Valid. Insects -51-75 ta Chiconomid larvae Coccabium salmonts -101-150 cm -151-200 cm Chironomid larvae Corobitum salmonis Corobicum filmings HARRAYKUL STECKLUSACK -26-50 cm -51-75 cm	16 (9) 26	[8] tr		[¼]	(9)		· · · ·				2	t
Unid. Insects 51-75 m Chironomid larvae Cocceding admonts 101-100 m Chironomid larvae Cocceding admonts Cocceding admonts Cocciding admonts Cocciding admonts Cocciding admonts Cocciding admonts Cocciding flunding HARRISPINI STICKLUSACK 26-50 m 51-75 ma	(9)	[8] . tr		[4]		[8]	: :				2	t
Chironomia larvae Coccahina arlanda 101-150 nm 151-200 nm Chironomia larvae Cocchiula allanda Cocchiula fluning HREEFERIA STICKLUSACK 26-50 nm 51-75 nm	26	tr		[4]		[8]	: :					
Chiconomia larvae Coccabina alimonis 101-150 mm 151-200 mm Chironomia larvae Coronhium salimonis Corolicula filmingi HREEFFERE STECKLUSACK 26-50 mm 51-75 mm	26	tr		. [4]		101					••	
Cencellus a thomis 101-150 ma 151-200 ma Chirenenid larvne Generallus galunings RERESPIUL STICKLUSACK 26-50 ma 51-75 ma			(1)		1					• • .		
101-150 mm 151-200 mm Chirenomid larvne Controllin salvenis Corbicula fluninga HREBERTIN STECKLUSACK 26-50 mm 51-75 mm	(1)	[1]	(1)			tr						
Chironomid larvae Gonomidu gaironis Gonomidu flumingi HREESPIUL STICKLUSACK 26-50 nm	(1)	[1]	(1)			٠.	(1)	[1]	(3)	[3].	!	
Corockfun sainonis Coroccula fluntaca HREESPINE STROKEUSACK 26-50 nm 51-75 mm	•			[1]				•-•	(1).	ίοj	·(1)	[
Corbicula fluntaca HREASSINI STROKUUSACK 26-50 nm 51-75 mm											l,	t
HREESPIEL STICKLESACK 26-50 mm 51-75 mm						_					` 3	ŧ
26-50 nm 51-75 nm						:	1 1		ı	tr	2	. t
51-75 mm	(2)	[3]				;					7	,
	(3)	[2]				-	(2)	())			(1) (5)	Į
Tabbeta longitions at 141 tested 11:	37	te.				1	(2).	[1]			(5)	Į
Concentua saluonis		••	•			1	23	tr			L.	ŧ
Chiconomid larvae						1	٠.	••			3	
Chironomid pupae										•	. 6	
Caphnia longispina											2310	:
Linstonua sp.							•				466	t
EAMOUTH CHU3 51-75 mm						1					•	-
101-150 nm			(6)	[6]		\.,			•			į
HIRON SALMON					(1)	[1]						
26-50 nm							(2)	[0]				- 1
Corpolitum unimonis					•	ļ	. 6	10				- 1
Digested insects							•	tr			.*	ļ
51-75 ma						1.	(3)	[1]				i
Corconium malmonia	•			•		Į	4	.06				ŀ
76-100 ma						ì			(17)	[7]	٠.	ı
Corosbium salmonis '						1.			51	.92		
Georgais nercedis Chironomid larvae									26 6	.26		
. 101-150 mm					(1)	[0]	(2)	[0]	(2)	(2)	(6)	1
Corophius salmonis					```f'	105	16	.25	31	.56	134	,
Oligochaetes		,		•	. 2	tr		•/		.,,		- 1
Chironomid larvae					•	,1,,			. 7	tr		- 1
ACIFIC STAGHORU SCULPIN .						i	•				•	ļ
0-25 mm .						.1	(1)					
Corcobium salmonis						1		tr				J
26-50 mm						[(25).		(1)	[1]		ļ
Coronhium salmonis Digested mysids						•	5,	.34 tr .				- 1
argeone agoras				•		ļ		. •• •				

Jul 76 No. Vol.						Vol.			70.
a)								V ₀ 1.	Ло,
						•	14	.25	
			<i>ጉ</i>					.05 [0]	
•	•	•	•		1		3	.05	•
••. •			. •		: !		ь.	06	
		•			i				•
•				•			٠		• ,
•.									. •
				! ^					
					1.				•
			•	l	1		•	•	
		. •		1	λ				•
-	•		•		:				• . ;
			•		!.				į
					i				. [
		· · · .			i	•			į
-									
		• • •							
•		•			•				.*
٠.		•							
				[*			•	' •
	• *			1.	:		•		ļ
•		•	٠.	1					
			. •	•	:	•			
•	•	•			•				
					•			•	
			-	•					
•	!		_	1	į.				
•	•	•	•	•]	}; !	٠.			
	•		•	1	. !	•			
_								(5)	114 . 25 (5) (0] 3 . 05 6 . 06

ú	·
Ċ	ú
١	-

	Jul 76		Sept 76	lov 7		Mar 17	May 7		Jul 7	7
PRICKLY SCULPIN	.Xo.	Vo1.	110. Vol	. No.	Vol.	No. Vol.	<u> </u>	Vol.	30.	<u> </u>
101-150 ma	(1)	[0]		*.		•		•		
Digested material .	\^/ _*	.05			•	į				
STARRY FLOURDER		.03								
26-50 mm	(17)	[2] .								
Chironomid larvae	(-) /	tr					•			
.51-75 ma	(6)	[3]							••	
Chironomid larvae	3	tr						• •		
Coronhium salmonis	ő.	.05			•	•				
76-100 mm	•	,					(4)	[4]:	•	
101-150 mm	(2)	[5]			•		(6)	[6]	. /. 1	
151-200 nm		• •					(0)	[0]	· (1)	į
THREESPINE STICKLEBACK					•				(1)	(
26-50 mm				(1)	[1]			•		
51-75 ma	(6)	[1]		,	; ~,	(4) [3]				•
Reshais longisping (diseated)	36 9	tr	•		1	(1)			•	
Coronium salmonis					i	2 tr				i
76-100 ma .							•			- 1
101-150 mm					i	λ				- ;
ARP .					1	٠ ٠				- 1
26-50 ma	(1)	[1]	•		i				•	1
SUCKER					ŀ					i
201-250 mm	(1)	[7])	•				- }
301-400 me	(1)	[1]		•					•	-
401-500 ha PEANOUTH CHUB	(1)	[1]								
26-50 mm	(.)				1					- 1
51-75 mg	(1) (5)	[1] [5]			١				•	-
101-150 um	(2)	151	(11) [11] (1)	[1]					- 1
MERICAN SHAD.			(1) [1]		1					- 1
51-75 ma	•		•		!, .				-	H
76-100 mm.			•	(2)	[5]					
Unid. eggs				(10)	[1]					- 1
Mark and the second sec				•	tr			•	٠.	- 1
Chirchomid pupae				3	tr					
Eurytemora hirundoides				1	tr	•				H
101-150 mg				5137	1.12					ţ
Unid. eggs				(1).	[0]					
ROMIAZ MUR			٠.	• •	tre				•	- 1
51-75 na `					.1	1.3 1.3				
Digested material .					1	(2) [0]	(1,)	[1]		` ļ
COHO SALMON					.1	tr		•		İ
101-150 nm				•		•	/ 23	(01		i
Disested material	•				1	•	(3)	[2]		
151-200 пл					1 .	i •	/ -> *	. 10		
Diseated material		•			ન	İ	(3)	[1]		Į
				•	1	1	•	.10		- 1
					1	1				- [

		70.	Vol.	No.	Vol.	70.	Vol.	No.	Vol.	٠.	V 01.	
Ť,	CHIHOOK SALMOH							· .	-,		•	
	26-50 mm						•	(16)	[2]		••,	
	Corobium salmonis							13	. 51			
	Chironomid puone	•		•				ž	tr		- '	
	51-75 mm		. •					(10)	[3]			(2)
•	Corophium salmonis 76-100 mm		•					,	• • •			8
•	Difested naterial							•		(10).	[5]	
٠.	101-150 mm	•••						,			.20	
	Anisogammarus confervicolus			(1)	[1]	(3)	[0]			(12)	[6].	:(10)
:	Coronhius parts			•	•	1	tr				•	
:	Rematodes	·					.05			•		7
٠	Corochium salmonis	•				3	ÇF .	· • •		10		• • •
	Chironomid pupae							• :		10	. 18	. 18 . 45
٠	Daphaia longisaina						i			•		3010
	151-200 ma		• .			•	i	(1)	[1]			3010
	PACIFIC STAGHORN SCULPIN	•				•						
	26-50 na .			•	•		_1	(2)	[0]			
	Coronhius salmonis	•				٠.,	1		tr			
:	Coronhium salmonis						1	(1)	[0]			•
i	101-150 na						1,	*	.07			4 - 4
	Hematodes			•		(4) 1	[[2]	•				(1)
	Coronhius salmonts				٠.	16	tr .14					•
J	Jeomysis mercedis				٠.	- 3	tr					
- 1	Digested material	,	•				.50				•	
!	151-200 mm	•		• *		. •	1	•			,	(1)
•	Oncorhynchus tshavytacha juv. Lougrin Shalf				•	•	1					, - ,
-	101-150 ma						٠ ١,	•		•		
i	Jeogysis mercedis	•	•	_		(1)	[0]					•
1	and and a second	٠.	• • .	•		3	tr					
.							1 .				• ,	•
		*				•	- 1					
	•						1.	:		•	•	
- 1						• •						
. :			` :				1				٠.	
			•	٠.	٠.	•	• 1	:				
										•		
-	•					•	1 .			•		•
٠		•					.1			•••		
						•	•	•				
•										•		

	Jul 76	5 Vol.	Sept.	76 Vol.	Nov 76	۶ ۷٥١.	Mar 11		Nay 77	Vol.	Jul 70.
STARRY FLOURDER											
26-50 mm	(18)	[8]			(6)	[3]					1
Daphnia longishina (digested)	307				. (0)	(2)					(26
Coronium salmonis	105	o F					_	•			
	•				13	.12					
Digested material	1-1)		:				
51-75 mm	(5)	[3].			(12)	[11]					(8)
Daphnia longispina (digested)	86	tr.						•		•	
Corconium salmonis	•••				7	.06 •					
Digested naterial								_	•	_	•
76-100 ma							(8)	[2]	(1)	[1]:	•
Coronhium salmonis		•						.03	•	- ,	•
Disested mysids	_	_		•			1	tr		•	
101-150 na	(1)	[1]				•	(2)	[1]	(2)	· [1]	(i)
Coronhium salmonis						i		1.50	`~ í b	.25	
PTAMOUTH CHUB						İ	- 1				
151-200 mm	(2)	[2]		•		1					
201-250 ma	(1)	(1)				1		1.	•		
251-300 nm	(2)	(2)									
CHINON SALMON				٠.		ᢤ.	1				
26-50 mm		•				1	(5) 5	[1]			
Corophium salmonis						1	17/2	.11			
Digested insects						1	7				
51-75 mg				•		1	(12)	fol			
Corophium selmonis						1					
Didested insects						1	5 #	, 38			-
The leichthys pacificus lar.						j	.6	tr '	•		
76-100 mg				•		1.	14	tr			
			•		•				(10)	[1]	
Secrets mercedia				•	• .	[3	tr	
Daotnia longiculna			•				•		98		
Corenhium salmonis				•		١			. 6	.11	•
103-150 па	(1)	[1]		•	(2)	[0]			(14)		()
Digested Copepods	• •					1			•	. 05	
Chironomid larvae	•			: .		1			2	tr	1
Corobhium animonis					4	tr			43	.77	3
Diptera					57	1.17					_
Digested material					•	.05					
THREESPINE STICKLEBACK											
26-50 жа	(1)	[1]			(1) ·	[1]		•			
51-75 mm	, ·•			•	,	1	(2)	[0]	·(3)	[2]	(1
Corophium salmonis					•	1		1.14			. • •
Canhaia longispina .						1	, ,		*1 K	tr	•
AMERICAL SHAD						-1					
76-100 ma					(1)	. [0]					
Eurytemora hirundoides					33		; .				
The second secon					3 3	. 1	!	•			
		•				•	- 1	•			
-		•				1	ŀ				
·			•				. !	•			
·						_!	:				
	_						- "				

Jul 76	Sept 76	Hov 76	Mar 77	May 77 Jul 7
				•
		•	. 1	(1) [0]
				1 tr .
		*		2 tr
•		•		• .05
				ll tr
		•	. 121 (22	• •
		an a		
,	•	(1) (1)	141	•
•		(1) (11	1	
		(*) (*)		•
			(5) (2)	(5) (0) (3)
			1 .07	6 .11
			(2) [0]	(14) [4]
	•			• .50
• •			1 6	/->
•		. [(2)
	, -		(3) (31	•
	. •			
		i.		(1) [0]
•		1.		25 .45
	•			(1) (1)
		t		
		,	•	(1) [1] .
			•	
			•	.*
• •	• .			
	•	Į.		• •
• .			:	
	5	' · . [•	
			:	
		٠,		
			•	
		•		•••
		•		
:		٠,١	i ·	
	. •	Ĭ		
•	•			
			<u> </u>	
			· · · · · · · · · · · · · · · · · · ·	
\$				
\$:	
				(1) (1) (1) (2) (2) (0)

		Jul 76				_ lov 76		2Ar 77		May . 17		Jul
STARRY FLOURDER		<u> </u>	Vol.	<u> </u>	<u>vol.</u>	<u></u>	Vol.	<u> </u>	V01.	<u> </u>	Vol	70.
26-50 ma		(15)	[15]	(11)	[10]						•	(25
Coronhium salmonis		1277	1271	1	tr			:				(4)
51-75 na		(8)	[6]	(11)	[8]	(17)	[9]	(2)	[2]	•		(14
Coronhium salmonis			tr.	,	tr	43	.39		[-]			, - 3
Reomysis mercedis			•	•	٧.	. 2	tr					-
76-100 :::a		•		(1)	[1]	(3)	(i)	•		(8)	[8].	••
Coronium salmonis				,		23	.21 .			• • •		
101-150 ma							•					(6)
151-200 nm							_	(1)	[1]	•		(2)
Corobhium salmonis			•				• `					. 4
Digested material								_				
Digested insects						•	•					•
THREESPINE STICKLEBACK								٠.				
26-50 za		(5)	[1]	(55)	[22]	(4)	[4]			•		(1)
Digested material		*	t r				i				٠. ٠	
51-75 Em						(5)	[2]	(1)	[0]	(1)	[0]	
Digested material	•						1			•	tr	
<u>Eurytemora hirundoides</u>	•	•				209	tr	<i>}</i>				
Digested insects							}	•	.05			
CARP							1			(())	
401-500 mm		(1)	[1]				1			(1)	[1]	
501-600 mm PEAMOUTE CHUB		(1)	(1)				1					
26-50 mm		(1)	[1]				İ					-
51-75 ma		(1)	[1]	(12)	[12]				•	•		
76-100 mm				(4)	(4)		1					•
101-150 ma		(1)	[1]	(7)	[7]	(1)	[1]					(2)
151-200 ma		ίί	lii	(i)	iii	(1)	lii					(1
201-250 ma		``		(2)	[2]	(5)	(5)	•				ίī
251-300 mm				(-,		(2)	[2]					• -
CHIROOK SALMON		• • •				(-,	1,2,					
26-50 mm							1	(15)	[5]		•	•
Cordonium salmonis y					-		1	` 16	.22			
51-75 nm		(6)	[0]				1.	(13)				
Corobhium salmonis		_				٠.	1	31	.46			
Lashnia longispina		3160	5				1				>	
101-150 ==		(10)	[0]	(11)	[1]	(3).				(7)	[5]	(5
Arachnids		_			•	. 4	.05			٠		
Coroshium salmonis		3	tr				.!			• •	.07	•
Reomysis mercedis		9210	.05	4	tr		i	•				
Caphnia longispina		8315	8.0		A		.1				•	
Digested material (tr		1	:				
Hypenopters-Formicidae				3	05	58.	1 70	į ·				
Diptera			•	3	.05	>o. 8	.75	ļ.				
Hemiptera	•			. 3	t P	5	.06					
.ುರವಸ್ಥಿಸಲ್ ಕಡು)	1.00		•			

	Jul 76	Vol.	Sept 7	76 'Vol∵''	No. 76	Vol.	Mar 77	Vol.	Nay 17	Vol.	Jul i
CHINOCK SALMON (continued)											
151-200 mm					(1)	[0]	(6)	[1]			
Anisoganmarus confervicolus	٠.					-	9	. 2			
Insect pieces	•					.65					
Corophium salmonis							138	2.00	_		•
Hydenoptera-Fornicidae				*	٠ ١	.05			•		
. Diptera	•				6	. 10					-
Hemiptora					ı	.05 .	•		•	•	
201-250 zm							(4)	[0]			
Corophium salmonis								2.40			:
PACIFIC STAGHORN SCULPIN						•					
26-50 mm.									(1)	[0]	(6)
Corophium salmonis			L				•		` _ 2	`.ó.	,
51-75 ma						1 .	• •		(5)	[0]	(8)
Coronhium salmonis						1			7	.13	14
Digested material						1			•	.05	
Anisoreumarus confervicolus		• .				1	•		. 3	tr.	
76-100 mm						1			_	•	(10)
Coroshina salmonis	•					İ	λ				31
101-150 mm			(1)	[0]	(11)	[1]	. %.				(6)
Jeogysis nercedis			26	. 23	15	.13				•	
ophium salmonis				-	62	.56					45
Chironomid larvae					1	tr	•				•
Digested material '					•	.3					
151-200 ma	•					1					(1)
Corophium salmonis						1					9
LARGESCALE SUCKER						1	-				
401-500 nm			(1)	[1]		1					(6)
501-600 mg					•						(1)
AMERICAU SHAD						i	•				
76-100 an				_	(14)	[4]					
Eurytemora hirundoides	•			•	6062	.10					
101-150 na					(6)	[2]				•	
Eurytemora hirundoides					436	.50					•
151-200 mm						1.			•		(1)
201-250 mm			(2)	[8]		1					(4)
.251-300 ma				• •		1 .					(1)
301-400 ma								•			(2)
LONGFIA SMELT				•		1 '					
75-100 ma				•	•	4					(17
Recovsis percedis .						1			•		· · · · i
Coronhium salmonis						.			• • •		-
101-153 ER					(10)	151	•				
Recovals morcedia	•				28	.20					
EULACHOR						1					
101-150 nm		•		•	•	•1	(1)	[1]			
151-200 ma				•		1		[21]			
						1	V=21				

.

	Jul 76 No. Vol.	Sept 76	No. 76	Mar II No. Vol.	No. Vol.	Jul /
COHO SALMON 101-150 nm Corobhium salmonis 151-200 nm CUTHROAT TROUT . 301-400 mm			.00. 102.		(2) [0] 51 1.00 (3) [3]	
. 301-400 mm	•			. :		.(1)
	•		•		•	•
!				· .		
·	• • •		`	. •	•	
		:		Y		
	•					
-		•				
	• •			•		
	•	•		\$ -2	·	•
	•	•			•	
, -14				•		•
	'					

. 337 .

Sept 76 No. Vol

30v 76

Mar 77

Vol.

Hay 77

No.

Vol.

Jul 77

No.

Jul 76

() Number examined in parentheses
[] Mumber empty in brackets
[Volumes in ml

Ġ		
	٠.	

		Jul No.	76	Sept	76	Sov 7	6	Mar I	7	May 71		Jul	,-
COHO SALMON			Vol.		Vol.	No.	Vol.	No.	Yol.	No.	Vol.	"No.	' '
101-150 nm								1					
Disested material							•	- }		(6)	[1]		
Coronhium salmonis						•		1		``´´*	.10	•	
151-200 mg								. !		8	.1%		
Coroshium salmonis			•						•	(2)	[1]		
STARRY FLOUNDER				•		•				16	.29		
26-50 mm		(6)	[2]		•						,	••	
Chironomid larvae		103	1 2 1							•	٠.		
51-75 nm ·		(5)	[0]		•			1					
Chironomid larvas		`161	.16			(1)	[1].			•		(1)	
76-100 mm.			• 10						•				
101-150 mm		•				(1)	[1] .					•	
151-200 mm								(2)	[2]			• .	
PACIFIC STACHORN SCULPIN						(2)	[5]	(3)	[3]				
101-150 mm				,		/11	1000		•	•	•		•
Corcohium salmonis		* •	٠.	•		(1)	[0]	<u>.</u>				(1)	
Peomysis mercedia				_		2 1	tr	i					
Digested Enterial				•		7	tr	1					
LARGESCALE SUCKER , .							.05	.).					
)1-() And 101-150 And				•		(1)	[1]	1 3			. ,		
251-300 mm						(i)	(1)				•		
301-400 ma				(1)	[1]	14/	1.41	:.					
401-500 nm				(1)	iii	(1)	[1]						
501-600 mg				(9)		14/	11.2	(1)	123			•	
EURO ETUOMASS				(1)	[9] [1]		1	(1)	[1]				
26-50 на				•	• •		1	(+)	(1)				
51-75 nn		(2)	[5]		•		1					•	
76-100 nm				(13)	[13]	(2)	[2]	(1)	[1]				
101-150 mg				(6)	[6]	1-7	1,21	141	(+1				
151-200 nn		(2)	[5]	(8)	[8]		1.					•	
201-250 nm				(3)	ĺβĴ		1						
301-400 mm		(1)	[1]	(4)	.[4]		1.						
, , , , , , , , , , , , , , , , , , , ,				(1)	[1]		1					•	
							1.			•			
							ì						
_						•	1						
•							1		•				
					٠.		1						
•							` {						-
	_						1	•		• .		•	
, <u>, , , , , , , , , , , , , , , , , , </u>	•						1			• •			
, , , , ,							•}						
•							1	1.					
•	•		•				.}	1.					
•			•		•	'	1	ł	٠.				
							I	1					

^() Sumber exemined in parentheses () Sumber empty in brackets Thirty in al

•	Jul 76	6 Vol.	Sept 7	76 Vol	Nov 76	6 Vol.	Mar 17	Vol.	31ay 77	7	Jul 77	7 Vo
ROMAKS ADMON				101.		- 101			<u> </u>	-,01.	<u> </u>	
26-50 mm ·							(20)	[0]		• .		
Chironomia pupae												
Corophium salmonis							56	8 د ،				
51-75 na							m ⁹ .	.14				
Chironomid pupae		•			•		(4)	[0]	•		•	
Chironomid pupae Conophium salmonis			•				16	.11				
76-100 nm		-					. 7	.11			100	
	***				•		•		(15)		(6)	[]
Georges mercedis									. 3	.03	. 6	
Chironomid pupae	133	for 1	121	[0.1			•	•	61	.37	< 1	, :
	(1)	[0]	(3)	[0]					(10)	[0]	. (6)	{ 1
Chironomid larvae	•						1. San Jan 1984		6	tr		
Recorvais mercedia	3	.07	24	.20			•		2	tr	•	
Danial lengispina (digested)	61	tr		_		1	•					
Digasted material				.70		1					•	
Danhais longispins			676	.07		1						1
Chircnon'd pupae			3	tr		1			140	. 24	19	
Coronhium salmonis						1			8	. 14	3	t:
PRICKLY SCULPIN	. ,	•				1						į
26-50 nu	(3)	[3]	(2)	[0]		ì						j
Digested material			*	tr		1				•		i į .
151-200 na	(1)	[0]					•					- 1
Platichthys stellatus juv.	2	1.75				1	•					J
TARRY FLOURDER				,		1					:	į
26-50 mm	(10)		(11)	[8]		1.					(10)	
Corophium salmonis	6	.05				1.					l _k	ŧ.
Oligochaetes	7	tr	•			ł					•	- 1
Chironomid larvae			5	tr		ı					21	
Digested material						١	: .					t i
51-75 ma	(2)		(15)	[7]	(9)	[9]	(4)	[4]	(1)	[1]	(13)	
Conceptium anlmonia	Ĩ	tr				.					6	i
Oligochaetes	- 6	tr		-		1						.
Chironomid larvae				5		1	-			•	. 5 /	t:
Jeonysis mercedis v			10	tr		1					. '	- 1
Digasted material					_	1.	•		•	_	•	- lt:
76-100 mm			(1)	171	• .	1			(2)	[2]		ŀ
101-150 mm			(1)	[1]		1	_		(1)	[1]		1
151-200 пл			(1)	(1)	٠.	1 .	f (1)	[0]	(16)	[6]		j
Corochium salmonis		•		, 1		1	•		21	. 38		1
Chironomid larvae			-		•	.1	12	tr				- 1
Corbicula fluminea						1	•			e . u	•	
201-250 mm						i			(1)	(i)		1.
HREESPINE STICKLEBACK		_				•1	-		•	•		1
26-50 mm	(10)		(14)	[7]			:				(6)	-!t:
Danhnia longispina (digested)				•		1	•				•	i`
Dacheia lengispina			226	tr	•	4	ŧ					
Eurytemora hirundoides			151			1	i		•			.
Scatted caterial			-/-			1	100	•				1

	Jul 76	Vol.	Jept No.	76 Vol.	No. 76		Mar 77 No. Vol.	Hay TT	Jul //
PERMOUTH CHUB 26-50 ma	(13)				30,	V01.	!		
Digested enterial	(13)	[13]	(49)	[48]			(1) [1]		(4) {
51-75 mm			(1)	tr [0]	(11)	[11]		(2) (2)	(1)
Digested material			(1)	tr	(11)	[TT]		(2) [2]	(4) [
76-100 mm	(12)	[12]	(13)	[13]	•			(1) [1]	.(13) (
101-150 nn	(3)	[3]	(31)	[31]	(1)	[1]		(4) (4)	(27)
151-200 mm	(6)	[6]	(23)	[23]	(- /			(16) [16]	(15)
201-250 mm	(9)	[6]	(7)	[7]	(1)	[1]		(5) [5]	(20).
Unid. vegetation					,-,		! .	(2) (2)	
PACIFIC STAGHORN SCULPIN		•				-		i.	
26-50 mm				-			(3). [0]		(20) [
Unid, enimal material						•	tr		(-, -, -, -, -, -, -, -, -, -, -, -, -,
Rephysis Rencedia							1 1		3
Coroshium salmonis						Í	1 tr		6
Chironomid larvae				•	•				36 t
0-25 ma	•					1	2		(4) [
LARGUSCALE SUCKER	•					1	i .		1
51-75 mm 76-100 mm	•		(2)	[5]	(1)	[I])		4
401-500 mm					(1)	[1]	•		
KOMAKE OHOL					(1)	[1]		(1) [1]	•
51-75 nm						1			1
Chironomid pupae							;	(1) [0]	. j
76-100 mm	•					1		5 tr	()
101-150 mm						1			(1) [
ORTHERN SQUAWFISH						1	,		(2)
51-75 mm						Į			(1) (
76-100 mm					•	Ì			(2)
151-200 nm ·						1			(1)
						1			(*)
•	•					1			!
				:		1		•	
						1			
. •						1.			\
• •					٠.				į
									į
•						1			1
				•				•	- 1
					•	`		•	.
							•		İ
						.}	•		i
*						1	1+		
						1			
· ·		. :				.1			į
						1			
						ı			ļ
•									í
						1	!		1
	•					•			
•									

APPENDIX B13: PERCENT NUMBER AND VOLUME OF ITEMS CONSUMED BY ALL FISH THROUGH JULY 1977

Appendix Table Bl3

Percent Number of Items Consumed by all Fish at Miller Sands July 1976 through July 1977

	July 1	976	jest 1	976	Sev 197	76	Bar 197	7	May 197	77	July 19	 77	Ţ·
an itodes	30.	\$ iio.	. 10. 2	% Ho.	10.	% iio.	iio.	<u> 110.</u>	но.	; No.	: 0:	3 HO #	
			·										
igochaetes	52	tr	·		15	tr	3	tr ———					1
habnin longispina habnin longispina habnin longispotris habnercus sp	214	ì	909	41	9	tr	12	tr tr	181	7	6657 30	55 tr	; ; !
Ingested cladocerans (mainly D. longispina)	13339	83	178	8									
onepods <u>surytemora hirundoides</u> <u>sintonus</u> sp. Digested copepods	419	3	498	23	17613	93			369	13 tr	466	.	
ysids <u>Sconysis mercedis</u> Digested mysids	31	tr	351	16	155	1	94	ا او د	48	2	32	tr	
omphipods <u>Corophium salmonis</u> <u>Anisognamarus confervicolus</u>	86	tr tr	38 1	2 tr	293 2	2 tr	1145 33	52 2	720 5	25 tr	1903	16 tr	
elecypods Corbicula fluminea					İ				5	tr	2	tr	
astropods <u>Plaurocera</u> sp. Unid. gastropods					2	tr					2	tr	
stracods Unid. ostracods							37	2					
nsects Chironomid larvae Chironomid pupae Diptera	1803	11	180 6 20	8 tr 1	159 1 496	tr 3	117 713	5 33	123 1300	ا ار ط	922 1854 1	5 15 tr	
Coleoptera Odonata nymphs (dragonfly) Odonata (damselfly) Tipulidae larvae	2	tr	2	tr	9	tr	1	tr			1 1 1	tr tr tr	
Hemiptera HemipteraCorixidae Hymenoptera HymenopteraFormicidae			2 1 6	tr tr tr	8 1 13 62	tr tr tr	6	tr			5 5	tr tr	 - -
Ephemeroptera Unid. insects Dig. insects					•	tr	3	tr	i		96	1 tr	
costs -haleichthys pacificus laratichthys stellatus juv.	2	tr					14	1	84	3	_		
ncornynchus tshawytscha juv nterosteus aculentus esse unid, fish scales inid, fish bones	14	tr			1	tr					11 2	tr tr tr	
inid. fish			3	tr	2	tr	2	tr			·		ļ
her Arachnids <u>-norimosohaeroma oregonensis</u> -ravel and sand -ticks -/nthetic fiber			• 7	tr tr	5 1	tr tr tr	• 2	tr tr	1	tr			
entation seeds nid. Engetation incested material nid. invertebrate eggs	26	tr tr	•	tr		tr tr	4 .	tr tr	•		14	tr tr tr	

⁻ indicates presence

⁻ trace

In accordance with letter from DAEN-RDC, DAEN-ASI dated 22 July 1977, Subject: Facsimile Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced below.

McConnell, Robert J

Habitat development field investigations, Miller Sands marsh and upland habitat development site, Columbia River, Oregon; Appendix B: Inventory and assessment of predisposal and post-disposal aquatic habitats / by Robert J. McConnell ... cet al., National Marine Fisheries Service, Prescott, Oregon. Vicks-burg, Miss.: U. S. Waterways Experiment Station; Springfield, Va.: available from National Technical Information Service, 1978.

344 p.: ill.; 27 cm. (Technical report - U. S. Army Engineer Waterways Experiment Station; D-77-38, Appendix B)
Prepared for Office, Chief of Engineers, U. S. Army, Washington, D. C., under Interagency Agreement Nos. WESRF 75-88,
WESRF 76-39, WESRF 76-178 (DMRP Work Unit Nos. 4B05C, J, and L.

Literature cited: p. 83-86.

- 1. Aquatic habitats. 2. Benthic fauna. 3. Columbia River.
- 4. Dredged material. 5. Dredged material disposal.

(Continued on next card)

McConnell, Robert J

Habitat development field investigations, Miller Sands marsh and upland habitat development site, Columbia River, Oregon; Appendix B: Inventory and assessment of predisposal and post-disposal aquatic habitats ... 1978. (Card 2)

- 6. Field investigations. 7. Fishes. 8. Food utilization.
- 9. Habitat development. 10. Habitats. 11. Marsh development.
- 12. Marshes. 13. Miller Sands Island. 14. Sediment
- 15. Water quality. 16. Zooplankton. I. United States. National Marine Fisheries Service. II. United States. Army. Corps of Engineers. III. Series: United States. Waterways Experiment Station, Vicksburg, Miss. Technical report; D-77-38, Appendix B.

TA7.W34 no.D-77-38 Appendix B